

A VISUAL SIMULATION FRAMEWORK FOR SIMULTANEOUS
MULTITHREADING ARCHITECTURES

Adrian Florea1, Alexandru Ratiu1, Arpad Gellert1 and Lucian N. Vinţan1,2

1 Computer Engineering Department, “Lucian Blaga” University of Sibiu, Emil Cioran Street, No. 4, 550025 Sibiu,

Romania
2 Academy of Technical Sciences from Romania

E-mail:{adrian.florea, arpad.gellert, lucian.vintan}@ulbsibiu.ro, ratiu_alex@yahoo.com

KEYWORDS
Simulation, Education, Computer Architecture,
Simultaneous Multithreading, Benchmarking.

ABSTRACT

The computing systems, and particularly
microarchitectures, are in a continuous expansion
reaching an unmanageable complexity by the human
mind. In order to understand and control this expansion,
researchers need to design and implement larger and
more complex systems’ simulators. In the current
paradigm the simulators play the key role in going
further, by translating all complex processing
mechanisms in relevant and easy to understand
information. This paper aims to make a suggestive
description of the concepts and principles implemented
into a Simultaneous Multithreading Architecture. We
introduce the SMTAHSim framework, an educational
tool that simulates in an interactive manner the
important aspects of this particular microarchitecture.
The graphical simulation and the results reporting
techniques provide a lot of easy to understand
information that outline an expressive image of
Simultaneous Multithreading (SMT) processing
mechanisms. Our developed software tool facilitates the
understanding of theoretical questions, thus allowing
students to feel more confident when studying SMT-
related issues.

1. INTRODUCTION

The computer science (CS) domain is a very complex
one, representing the result of one of the largest and
fastest scientific developments known to mankind. This
gradual evolution has engaged, during the last six
decades, hundreds of bright minds from different fields
(mathematics, physics, electronics, automation, and
informatics), giving birth to a new science (CS), which
has revolutionized everyday lives of the people.
However, the main responsible for computers progress
are microprocessors. The continuous expansion of
microarchitectures has lead to a hard to control and
understand complexity explored with the help of larger
and more sophisticated software simulators.

Also, in today’s world, there is an ever-increasing
need for intelligent systems, especially in educational
domain. Without modernize our teaching tools in
computer architecture, based on the latest research
achievements but also on trade, we risk losing contact
with the development of computer engineering.
Therefore, it is a stringent necessity to develop teaching
resources (software simulators) related to a hard kernel
of the fundamental disciplines in computer engineering,
like computer architecture, compilers, operating systems
and computer networks. Developing effective learning
tools targeting these disciplines is a continuous
challenge.

In this paper we try to give a better understanding of
SMT microprocessor architectures by developing a
visual simulation framework. Due to the complexity
level, we make the learning steps easier, driven by
expressive simulations which can provide us, based on
the general picture of the system, a detailed one (top to
down approach). But why SMT architectures request
interest? The current microarchitectures have three
major limiters (the so called “brick wall” concept):
• Memory wall – the increasing gap created between

processor clock cycle time and the main memory
access time;

• Instruction Level Parallelism (ILP) wall – generated
by the present-day impossibility to issue a
continuously higher number of instructions in parallel;

• Power wall – favorized by the frequency scaling as the
number of transistors on chip increase.
The SMT architectures come as a solution to the first

two limitations by combining the superscalar instruction
issue with the multithreading approach. Thus,
instructions from multiple threads could be
simultaneously issued in a single clock cycle. Latencies
that occur in the execution of single threads are bridged
by issuing operations of the remaining threads. Other
arguments refers to the fact that, although single-core
SMT architectures are on the market since 2002 (Intel
Pentium 4 Northwood Hyperthreaded) until now – in
2010 Intel released the Core™ i3, i5, i7 with
Hyperthreaded technology on each core (Intel 2010) –,
in the authors’ opinion, there are not efficient
pedagogical tools dedicated to teach SMT concepts
easier and more intuitively with interactive animation.

Proceedings 25th European Conference on Modelling and
Simulation ©ECMS Tadeusz Burczynski, Joanna Kolodziej
Aleksander Byrski, Marco Carvalho (Editors)
ISBN: 978-0-9564944-2-9 / ISBN: 978-0-9564944-3-6 (CD)

mailto:arpad.gellert,%20lucian.vintan%7D@ulbsibiu.ro

The fast development of computer science and
computer architecture especially, have determined that
many software tools, used not long ago in research, are
enhanced with an interactive graphical interface and are
taught in Computer Architecture courses. The lack of
simulators dedicated to simultaneous multithreading
architectures used for didactical purposes, despite they
are highly used in research goals, represents the starting
point of this paper. In order to better achieve this
purpose, we try to develop a compact hybrid simulator,
which integrates microprocessor instruction stream,
branch prediction and cache memory simulation.
Judging from educational goal, through this work we
propose few new ideas:
• Hybrid simulation (trace- and execution-driven) of a

SMT architecture using interactive animation.
• Introducing real branch predictors dedicated to each

simulated thread (branch prediction was only
statistically generated in other similar simulators
(Smullen and Taha 2006)). For example we
implemented gshare (a two-level adaptive branch
predictor (Yeh and Patt 1992)) and two state of the art
dynamic predictors: FPBNP (a fast path-based neural
branch predictor (Jiménez 2003)) and OGEHL
(Optimized GEometric History Length branch
predictor (Seznec 2005)). The last one was classified
on 2nd place at World Championship of Branch
Prediction (CBP 2004) and received the best practice
award for “the predictor the closest to a possible
hardware implementation”. The branch predictors can
be used also as a third party lesson / application.

• Introducing a parameterized instruction cache shared
between threads (both instruction and data caches
were only statistically generated in other similar
simulators (Smullen and Taha 2006)).
From a didactical point of view, the developed tool

(SMTAHSim) has benefits in the learning process
because it helps students to observe the influence of
each parameter on the simulation model. The
SMTAHSim simulator provides a wider variety of
configuration options. Thus, it can be determined how
branch prediction accuracy or resource usage varies with
input parameters (number of entries in prediction tables,
history length, number of bits for weights representation,
etc). The execution-driven simulation allows
SMTAHSim’s tool to give fine-grained results regarding
every microarchitectural unit during and at the end of
the benchmarks’ simulation. All final simulation results
are stored in a database and can be used further to
generate a large palette of reports regarding units’
performance in correlation with almost every parameter.
The SMTAHSim simulator assures three of the features
specific to almost all high-performance academic
standard simulators: free availability for use,
extensibility and portability. Full inheritance and
polymorphism is used in the simulator’s source code,
allowing easier extension in the future, adding new
functionalities.

We developed SMTAHSim simulator using the
Microsoft .NET Framework 3.5 writing over 7K lines
code. The simulator is running on Windows
2k/XP/Vista/7 and is currently used in undergraduate
and graduate courses / laboratories in (Advanced)
Computer Architecture at “Lucian Blaga” University of
Sibiu. The simulator can be found at
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoar
e/SMTAHSim.html

The organization of the rest of this paper is as follows.
In section 2 we review the Related Work in software
simulators domain dedicated to microarchitectures.
Section 3 describes the theoretical background related to
SMT, whereas section 4 presents the used benchmarks
and simulation methodology. Section 5 illustrates the
simulator software architecture, the simulator kernel
from hardware viewpoint and the SMTAHSim user
interface. Based on a short interactive animated
example, we explain the SMT functionality. Finally,
section 6 suggests directions for future work and
concludes the paper.

2. RELATED WORK

After almost four decades of concerning in
microprocessors design, implementation and
exploitation, the researchers from computer science
domain got the conclusion that simulators have become
an integral part of the computer architecture research
and design process (Yi and Lilja 2006) and simulation
technology and methodology represents the crux of
computer architecture research and development (De
Bosschere et al. 2007).

Besides their importance proved in computer
architecture research field, in the latest time, simulators
have been extensively employed as a valuable
pedagogical tool as they enable students to understand
better the theoretical concepts and to visualize how
microarchitectures components work and interact with
each other (Yi and Lilja 2006).

In microprocessor systems’ domain, as
microarchitectural complexity increases, (crossing from
instruction-level-parallelism to thread-level-parallelism
and toward multi- and many-core architectures), it is
more difficult to explain concepts like caches, out-of-
order and speculative execution, power consumption,
and the interactions among the architecture components
without visual aids. Graphical simulations of these
architectures allow students to easily grasp the
architecture concepts by observing the flow of
instructions in time, also by exploring the impact of
different processors configuration on performance,
dissipated energy and temperature. The static visual
office tools (such as graphical charts, diagrams, slides
etc.) are limited in efficiency: they cannot
simultaneously exhibit both the structural relationships
between microarchitectural components and the
temporal dependences between executed instructions
that are in-flight in the pipeline structures and cannot
explain the functionality of coherence mechanism in

http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/SMTAHSim.html
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/SMTAHSim.html

multicore architectures, etc. Some of the present-day
most used didactical simulators are:
• WinDLX was developed for Windows operating

system by Herbert Grünbacher (Grünbacher 1998) and
simulates Hennessy and Patterson’s DLX (DeLuXe)
architecture (Hennessy and Patterson 2007). The DLX is
a didactic microprocessor designed in accordance with
the most popular RISC microprocessors (SPARC,
MIPS, etc.). Simulation exposes in an expressive
manner the principle of in-order pipelined execution
(execution steps, data hazards, forwarding) and
performance penalty involved by high latency
instructions (delay slots) but, because it is modeled at
architecture level quite few information is given about
the processor.
• VLIW-DLX extends the WinDLX simulator to a

VLIW model, using the same DLX ISA. It is
implemented in Java and allows modifications of the
architecture, including ISA (Bečvář and Kahánek 2007).
• PCSpim-Cache is an execution-driven simulator

indented to be used in undergraduate courses for
teaching cache memories within MIPS architecture. The
tool allows to run step-by-step a selected code on a
proposed cache organization and meanwhile observe
dynamic changes in its structure (Petit et al. 2006).
• PSATSim is a powerful graphical simulator which

offers support for students in better understanding the
tradeoff between processors’ performance and power
consumption. The simulated microarchitecture is a
configurable superscalar architecture with speculative
out-of-order execution. The GUI allows in an interactive
and easy way to simulate different microarchitectural
configurations and assures a quick feedback (Smullen
and Taha 2006).

However, unlike SMTAHSim, part of the existing
simulators (Hostetler and Mirtich 1996; Burger and
Austin 1997; Skadron et al. 2003; Sharkey et al. 2005;
August et al. 2007) were designed primarily for
research, the emphasis is on modeling the effects of
architectural mechanisms. Most of these simulators are
not trying to visually express the behavior of
architectural mechanisms and the interaction between
them. They are often designed to model a specific
architecture and are also too complex to be studied by
students who are beginners in concepts such as SMT.
On the other hand most of the didactic simulators used
in Computer Architecture are simulating only some
simplistic toy-benchmarks. As it will be further
presented, our developed simulator can process complex
benchmarks that are intensively used in research
activities, too. The interactivity of SMTAHSim
simulator allows both to know in every machine cycle
the content of CPU resources (reservation stations,
functional units, reorder buffer, rename buffer, pipeline
structure) and to experiment unforeseen circumstances
like forcing a miss in D-Cache (this cache module is
modeled statistically based on benchmark
characteristics).

3. THEORETICAL BACKGROUND

It is well known that superscalar architectures exploit
Instruction Level Parallelism (ILP) by fetching and
executing more than one independent instruction per
cycle. Despite that, the instruction-per-cycle (IPC) rate
is limited to relatively low values, due to a lot of factors
(Hennessy J., Patterson D., 2007).

The SMT architecture comes as a solution to the
above mentioned limitation by combining the
superscalar mechanism with the multithreading
approach, which allows exploitation of both thread-level
parallelism (TLP) and ILP. In order to achieve this
performance, processor keeps different context
information (program counter, stack pointer, etc.) for
each active thread. Latencies which normally occur in
single thread execution are, in this case, (partially)
hidden by switching to another thread. This architecture
represents the mapping of high level languages’ explicit
and implicit concurrencies (threads or/and micro-
threads) into a processor having implemented multiple
contexts. A thread from hardware level can be a task or
a software thread within a task, but also can be made of
software entities of smaller granularity as loops, routines
or code blocks (micro-threads), which may be executed
in parallel (Eggers et al. 1997; Vintan and Florea 2000).

SMT architectures inherit the superscalar processing
mechanism and extend it with multithreading
architecture specific components. Mechanisms as out-
of-order speculative execution, register renaming and in-
order completion are also met in SMT architectures. For
assuring a different context, some hardware resources
are private for each thread (branch predictors, renaming
tables, logical register files, ROBs, Load/Store Queues,
commit units) and others are shared among threads
(fetch unit, decode unit, issue queue, physical register
files, execution units and cache memory), using a tag
information in instruction encoding to make the
difference.

To ensure a high throughput, SMTs need a scheduling
policy that arbitrates between threads for optimizing
shared resources’ utilization. The most common scheme
is the very simple Round-Robin policy, which switches
between threads in a circular way, regardless of their
behavior. A better strategy is implemented in the
ICOUNT policy which give higher priority to threads
with the fewest instructions in decode, rename and
instruction queues. The motivation is to give higher
priority to fast-moving threads and, at the same time, to
prevent starvation. ICOUNT tries to balance the number
of instructions in the pipeline among the various threads
so that all threads have an approximately equal number
of instructions in the front-end pipeline and instruction
queues (Manadhata and Sekar 2003; Eyerman and
Eeckhout 2009).

SMTAHSim benefits of both mentioned fetch policies
and gives user the possibility to understand how these
are influencing the IPC rate and other parameters, driven
by simulation monitoring tool.

4. SIMULATION METHODOLOGY

The SMTAHSim tool intends to help students in
teaching superscalar and SMT architectures, by
simulating a large palette of hardware configurations in
step-by-step or full trace simulation mode. In order to
obtain finest results, a hybrid simulation is performed.
The results are collected at the end of each processing
cycle by the Monitoring Tool and reported according to
user preferences (see Figure 1).

SMTAHSim's execution-driven simulation is
sustained by GUI which exposes in an interactive way
the SMT's architectural structure and execution-time
information. The step-by-step simulation gives a better
perspective above the instruction stream through
processing architecture and enables the user to visualize
how basic superscalar and SMT mechanisms work.

For result validation, a set of benchmarks are used as
simulator inputs, remaining to user choice which file is
used as input for each hardware thread. The benchmarks
represent a selection from the SPEC ’95 (applu,
compress, fpppp, ijpeg, perl (SPEC 1995)) and
MediaBench 1.0 (epic, mpeg2d, mpeg2e, pegwitd, toast
(Lee et al. 1997)) benchmark suites compiled for
SimpleScalar Portable ISA (PISA). All these
benchmarks cover a lot of applications ranging from
compression to word processing, from compilers and
architectures to games enhanced with artificial
intelligence, etc. We choose to use different benchmarks
in order to discover how these different testing programs
influence the processing performances.

5. THE SMTAHSim FRAMEWORK

The developed simulator must support the learning
process of students in SMT microarchitecture and search
for possible changes (architectural or optimization
techniques) to improve it. Providing a highly
parameterized model for every microarchitectural
instance, the performance obtained by simulation will
represent a quick feedback mechanism related to the
proposed changes, permitting thus an efficient design
space exploration process. The simulator’s execution
consists in the following sequential steps:

1) Initialization phase (configuring the micro-
architecture with the input parameters including the
benchmarks)

2) Simulation and monitoring phase
3) Results’ reporting
For the initialization phase the SMTAHSim provides

help with a quick and easy to use Configuration
Manager. This internal tool gives users the possibility to
load preconfigured or saved configurations from the
Configuration Repository or guides them through the
configuration process. The last simulated configuration
is loaded as default.

Some important architectural modules (called
suggestively ISA, Branch Predictor, I-Cache, Fetch
Policy) are implemented as interfaces and can be loaded
by the Add-Ins Manager as precompiled libraries. The

framework is easily extendable with our independent
modules which are inheriting the provided interface. The
Add-Ins can come also with their own configuration and
simulation GUIs.

Figure 1: SMTAHSim Architecture

The SMTAHSim framework provides two simulation
modes: a step-by-step simulation or a full unanimated
simulation. The user can easily switch between these
two modes by interacting with the Simulation Control
module. Depending on the running simulation mode, the
Monitoring Tool filters the results stored in the
Simulator Kernel’s Results Buffer. The simulation
process is carried out by the Simulation Machine which
performs independently of the user interfacing tools.
The Results Buffer is updated at the end of every
processing cycle with relevant information regarding
performance and with a current context copy, which are
later processed by the Monitoring Tool. This mechanism
speeds up the simulation because the Simulation
Machine is not interrupted by the graphical tools’
operations, only by the buffer’s overflow. The producer-
consumer design pattern is implemented: as the
Simulation Machine produces data, the Monitoring Tool
is using it to update the Presentation layer (GUI). When
the buffer is full, the simulation is suspended until the
data are consumed. All final results are stored in the
Results Repository and can be used to generate finest
reports with the Results Reporting tool. User is able to
get relevant graphics of SMT’s performance indices in
correlation with almost every architectural parameter.

5.1. The SMTAHSim Software Architecture

As we reveal in Figure 1, the framework is structured in
four main software packages:

• GUI (Graphical User Interface) plays an important
role as the highest level (Presentation Layer) of the
framework, which manages all USER’s interactions.
This package is developed around two basic principles:
ACTION and REACTION. All user actions have a
quick feedback from the system, and all this reactions
are managed carefully by GUI which makes the results
representation in an interactive and easily
understandable manner. Overall, this package makes the
framework a friendly and easy to use application.
• Input/Output package is the low level management

of all the simulation inputs and outputs giving the
extensibility and accessibility dimensions to the
framework. The aim of this approach is to make the user
to easily access the final results and architecture
configurations and, eventually, to develop his/her own
configurations and extensions to the basic architecture.
The framework came with some basic configurations
which allow a proper evaluation of the SMT
architecture’s performances. For others configurations, a
wizard is guiding the user step by step through the new
configuration defining process. All new simulated
configurations are stored in the Configuration
Repository at the user’s decision. The simulation results
of these configurations are also stored at the user’s
decision, in the Results Repository, and linked to the
simulated configuration. Due to this, software
architecture results can be used to generate fine-grained
reports regarding performance indices in correlation
with almost every parameter, directly from the Results
Repository. The Results Reporting tool supports users
through this process and allows generating a large
diversity of figures. The Add-Ins Repository plays a
very important role because it stores all third party
modules added by developers. The management of this
collection is carried out by the Add-Ins Manager.
• Application Kernel is the middle level

(middleware) which manages all user communications
with the application. GUIs are assured for each middle
level manager module in order to give user the access to
low level packages. The simulation is initialized via the
Configuration Manager and is run via the Simulation
Control module (step by step or full trace simulation).
The Monitoring Tool manages the feedback information
and supplies the user with interactive animation by GUI
update. Another important tool is the Add-Ins Manager
which has the responsibility to manage all third party
components added by developers. This module gives the
SMTAHSim the “framework” dimension by allowing
developers to extend the basic SMT architecture with
other modules (ISA, branch predictor, data cache, etc.).
The Add-Ins can provide their own configuration panel
which will be loaded by the Configuration Manager at
the configuration phase, and their parameters set will be
then stored in the Configuration Repository together
with the basic one. The developer must only implement
the interfaces provided by the Add-Ins Manager,
compile it in a library and then load it in the
SMTAHSim Add-Ins Repository.

• Simulation Machine is the most important package,
situated at low application level, which makes the
effective simulation.

5.2 SMTAHSim framework: Simulation Machine

SMTAHSim models a configurable SMT architecture
(Figure 2) designed in accordance with the M-SIM
architecture (Sharkey et al. 2005) which has at base a
superscalar architecture with speculative and out-of-
order execution. The pipeline structure of SMTAHSim
is based on that of PowerPC 5+ comercial processor
(Sinharoy et al. 2005). Actually, M-SIM extends the
SimpleScalar toolset (Burger and Austin 1997) with
accurate models of the pipeline structures, including
explicit register renaming, and support for the
concurrent execution of multiple threads. Basic
superscalar units are shared among micro-threads
(Cache, Fetch Unit, Decode Unit, Dispatch Queue,
Execution Units, Physical Registers), but in order to
assure different contexts some resources are private for
each micro-thread (Branch Predictors, Rename Tables,
Reorder Buffers, Commit Units, Logic Registers).

Figure 2: Simulated architecture

Simulation involves getting instructions from
benchmarks and passes them step by step through the
pipeline stages (Figure 3). There are three sections in the
pipeline: in-order frontend (fetch the instructions from
memory, make the branch prediction, decoding, rename
registers and dispatching), out-of-order execution (the
number of execution cycles is distinct for each
instruction type) and in-order backend (gets finished
instructions and updates the branch predictor). All
essential architectural parameters (superscalar factor,
number of micro-threads, number of execution units and
their execution cycles, etc.) are configurable through the
Configuration Manager.

Figure 3: Simulated pipeline

Due to the benchmarks’ characteristics, the effective
execution can’t be accurately simulated, because the
registers’ values are not known all the time. As a result
of this limitation, the single feasible D-Cache
implementation is based on an analytical model. Besides
these, another degree of abstractization is that branch
prediction is made in a single pipeline stage (Instruction
Fetch) even if in reality it could take more cycles.

5.3. SMTAHSim Framework: GUI

Projects supported by the SMTAHSim simulator are
dedicated to teach students about concepts related to
superscalar and SMT architectures (processing
mechanisms, constraints, limitation of ILP rate, etc.),
and are fairly sustained by GUI. Being the closest to the
user, this level of application has benefited the most of
our attention in order to give easy and interactive access
to all its features. Therefore, user can easily configure,
simulate and track the step-by-step results. In order to
get a big picture of SMT architecture performances,
GUI also supports user with a reporting tool.

Figure 4: Configuration Manager Interface

The Configuration Manager Interface (Figure 4)
makes possible to configure the simulated architecture
from a classic superscalar one to a 4-threaded SMT one.
Each micro-thread input can be settled independently.
After the architecture’s configuration the user can
control simulation by Simulation Control Interface and
make a step-by-step simulation: one simulated CPU
cycle each step (“Next” button) or simulating the input
traces entirely (“Go To End” button). In both cases the
IPC rate is updated in every CPU cycle (Figure 5).

Figure 5: Part of Simulation Control Interface

When fine step simulation is chosen, the Monitoring
Tool helps user to track the instruction flow from
fetching to committing by animated visualization of each
architecture units. Each instruction has a thread
identification number and a unique per thread identifier,
which are both distinctively colored, allowing to easily
following the pipelined execution process (Figure 6).
After the prediction of each branch instruction the

subsequent instructions are marked as speculative and
strike-lined until the branch execution ends and it turns
out that the prediction is correct. In case of a
mispredicted branch, after its execution, all speculative
instructions from the afferent thread are squashed and
the correct fetch path is taken.

Figure 6: Monitoring Simulation

After each full trace simulation a summary of
simulation results is shown.

Figure 7: Results

Prediction Accuracy

91.0
91.5
92.0
92.5
93.0
93.5
94.0
94.5
95.0
95.5

Gshare FPBNP OGEHL

Predictors

[%
]

HardwareBudget = 8KB

HardwareBudget = 16KB

Figure 8: Average branch prediction accuracies

As a concrete example, Figure 8 illustrates
comparatively the simulation results obtained with
SMTAHSim using three prediction structures: gshare
(Yeh and Patt 1992), FPBNP (Jiménez 2003) and
OGEHL predictors (Seznec 2005). The statistics are
collected after running the benchmarks described in
section 4 on two configurations (one of them imposed
by the hardware constraints of Championship Branch
Prediction (CBP 2004)) and represent the average
branch prediction accuracies.

6. CONCLUSIONS AND FURTHER WORK

The classical approach in teaching SMT concepts is
based largely on oral communication of professors.
They spend a lot of time in computer architecture
research or use paper and pencil to follow the execution
of the instructions flow. Although their efforts are to
emphasize the processor kernel activities, many times
they ignore the branch prediction and cache memory
simulation. Our approach represents a formative
necessity since computer architectures are mainly
approached in a descriptive manner. Through our
approach, students have the opportunity to be creative
and innovative in computer architecture or in other
research and didactical domains of computer science,
even in countries not very developed from economical
and technological points of view. Based on highly
parameterized developed simulation tools, students can
understand more in depth and in an integrated approach
the theoretical concepts related to SMT, branch
prediction constraints, limits of instruction level
parallelism, TLP benefits, cache memories, etc.

Although SMT architectures outperform its
predecessors, the evolution trend is maintained on
vertical by growing the technologic complexity.
Therefore a more aggressive approach (many micro-
threads) is heavily limited by the management logic’s
complexity growth. It is clear that a new evolution trend
is needed, on horizontal approach, by decentralization of
processing power (multi-core). For further work we are
mainly concerned to solve the following issues:
 Simulating on benchmark sets which allow a real

implementation of data cache.
 Implementing a module for power consumption

calculation; this can help to evaluate the SMT
architectures based on this objective, too. It is well-
known that SMTs are energy-intensive due to their
complex and concentrated control logic. This module
is also necessary for evaluation of hardware branch
predictor within a given chip area budget, from both
power consumption and performance points of view.
 Adding modules to improve the processing rate, such

as value prediction, dynamic instruction reuse and an
execution trace cache.

REFERENCES

August D., Chang J., Girbal S., Gracia Perez D., Mouchard G.,
Penry D., Temam O., Vachharajani N., 2007 “UNISIM:
An Open Simulation Environment and Library for
Complex Architecture Design and Collaborative
Development”, IEEE Computer Architecture Letters, 20.

Bečvář M., Kahánek S., 2007, “VLIW-DLX Simulator for
Educational Purposes”, Proceedings of the 2007
Workshop on Computer Architecture Education.

Burger D., Austin T., June 1997, “The SimpleScalar Tool Set,
Version 2.0”, University of Wisconsin Madison, USA,
CSD TR #1342.

CBP: The 1st Journal of Instruction Level Parallelism
Championship Branch Prediction Competition (CBP-1),
Oregon, USA, 2004.

De Bosschere K. et al., 2007, “High-Performance Embedded
Architecture and Compilation Roadmap”, Transactions on
HiPEAC I, Lecture Notes in Computer Science 4050,
Springer-Verlag, pp 5-29.

Eggers S. Emer J., Levy H., Lo J., Stamm R., Tullsen D.,
1997, “Simultaneous Multithreading: A Platform for
Next-Generation Processors”, IEEE Micro, Vol 17, Issue
5, 12-19.

Eyerman S., Eeckhout L., March 2009, “Memory-Level
Parallelism Aware Fetch Policies for Simultaneous
Multithreading Processors”, ACM Transactions on
Architecture and Code Optimization, Vol. 6, No. 1.

Grünbacher H., 1998, “Teaching Computer Architecture /
Organisation using simulators”, Proceedings of the 28th
Frontiers in Education, IEEE Computer Society, Vol. 03.

Hennessy J., Patterson D., 2007, “Computer Architecture: A
Quantitative Approach”, Morgan Kaufmann, 4th Edition.

Hostetler L.B., Mirtich B., 1996, “DLXsim - A Simulator for
DLX”.

©Intel Corporation, 2010, http://www.intel.com/
Jiménez D., 2003, “Fast Path-Based Neural Branch

Prediction”, Proceedings of the 36th International
Symposium on Microarchitecture.

Lee C., Potkonjak M. and Mangione-Smith W., 1997,
”MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”.

Manadhata P., Sekar V., 2003, “Evaluating Throughput and
Fairness of Thread Fetch Policies for SMT Processors”,
www.cs.cmu.edu/~vyass/Fall03/15740/class-
project/project_report.pdf

Petit S., Tomás N., Sahuquillo J., Pont A., 2006, ”An
Execution-Driven Simulation Tool for Teaching Cache
Memories in Introductory Computer Organization
Courses”, Proceedings of the 2006 Workshop on
Computer Architecture Education.

Seznec A., 2005, “Analysis of the OGEHL predictor”,
Proceedings of the 32nd International Symposium on
Computer Architecture (IEEE-ACM), Madison.

Sharkey J., Ponomarev D., Ghose K, 2005, “M-SIM: A
Flexible, Multithreaded Architectural Simulation
Environment”. Technical Report CSTR-05-DP01,
Department of Computer Science, State University of New
York at Binghamton.

Sinharoy B., Kalla R.N., Tendler J.M., Eickemeyer R.J. and
Joyner J. B. 2005,"POWER5 System Microarchitecture",
IBM Journal of Research and Development, Vol. 49,
Num. 4/5, pp. 505-521.

Skadron K., Stan M.R., Huang W., Velusamy S.,
Sankaranarayanan K., Tarjan D., 2003, “Temperature-
Aware Microarchitecture.”. Proceedings of the 30th
International Symposium on Computer Architecture.

Smullen W., Taha T., 2006, ”PSATSim: An Interactive
Graphical Superscalar Architecture Simulator for Power
and Performance Analysis”, Proceedings of the 2006
Workshop on Computer Architecture Education.

SPEC 1995, The SPEC benchmark programs,
http://www.spec.org/cpu95/

Vintan L., Florea A., 2000, ”Microarhitecturi de procesare a
informaţiei” (in Romanian), Editura Tehnică, Bucureşti.

Yeh T., Patt Y., 1992, “Alternative Implementations of Two-
Level Adaptive Branch Prediction”. Proceedings of the
19th International Symposium on Computer Architecture.

Yi J.J., Lilja D.J., 2006, “Simulation of Computer
Architectures: Simulators, Benchmarks, Methodologies,
and Recommendations”, IEEE Transactions on
Computers, vol. 55, No. 3.

http://www.google.ro/url?sa=t&source=web&cd=5&ved=0CEMQFjAE&url=http%3A%2F%2Ffie-conference.org%2Ffie98%2Fpapers%2F1380.pdf&ei=fXE8TZq6CIv4sgbYn7zzBg&usg=AFQjCNGQcHAwk8P__JUP7HEkFUNsjhyXCA
http://www.google.ro/url?sa=t&source=web&cd=5&ved=0CEMQFjAE&url=http%3A%2F%2Ffie-conference.org%2Ffie98%2Fpapers%2F1380.pdf&ei=fXE8TZq6CIv4sgbYn7zzBg&usg=AFQjCNGQcHAwk8P__JUP7HEkFUNsjhyXCA
http://www.intel.com/
http://www.cs.cmu.edu/~vyass/Fall03/15740/class-project/project_report.pdf
http://www.cs.cmu.edu/~vyass/Fall03/15740/class-project/project_report.pdf
http://www.spec.org/cpu95/

