Energy-Performance Design Space Exploration in SMT Architectures
Exploiting Selective Load Value Predictions

2

A. Gellert! G. Palermo? V. Zaccaria

2

A. Florea! L. Vintan! C. Silvano?

1L ucian Blaga” University of Sibiu - Computer Science and Engineering Department
ZPolitecnico di Milano - Dipartimento di Elettronica e Informazione

{arpad.gellert, adrian.florea, lucian.vintan} @ulbsibiu.ro

Abstract—This paper presents a design space exploration of
a selective load value prediction scheme suitable for energy-
aware Simultaneous Multi-Threaded (SMT) architectures. A load
value predictor is an architectural enhancement which speculates
over the results of a micro-processor load instruction to speed-
up the execution of the following instructions. The proposed
architectural enhancement differs from a classic predictor due to
an improved selection scheme that allows to activate the predictor
only when a miss occurs in the first level of cache. We analyze
the effectiveness of the selective predictor in terms of overall
energy reduction and performance improvement. To this end, we
show how the proposed predictor can produce benefits (in terms
of overall cost) when the cache size of the SMT architecture is
reduced and we compare it with a classic non-selective load value
prediction scheme. The experimental results have been gathered
with a state-of-the-art SMT simulator running the SPEC2000
benchmark suite, both in SMT and non-SMT mode.!

I. INTRODUCTION

The performance of current micro-processors is limited
by the number of instructions that can be processed simul-
taneously [1]. The effectiveness of this process is limited
by existing read-after-write (RAW) dependencies, since one
instruction cannot be executed without reading the value of
its source operands, which in turn are written by a previous
instruction. Thus, whenever such a dependency exists, the
involved instructions should be serialized.

This is true for a wide category of operations ranging from
arithmetic instructions to branch and load/store instructions.
To overcome such drawbacks, super-scalar and multi-threaded
micro-architectures have been equipped with dynamic tech-
niques such as branch and value prediction that allow to
anticipate (predict) the value of the source operands and thus
start instructions earlier than the serialized case. However, the
additional energy consumption associated with such architec-
tural enhancements can be significant and should be traded-off
with the actual benefits in terms of performance to achieve a
required energy budget.

In this paper, we focus on load value prediction. Let us
introduce the concept of load value prediction by considering
the following code segment:

1: 1d.w 0($r2) — $r3

2: add S$r4, $r3 — S$r5

3: add $r3, S$r6 — S$rb6

As can be seen, the execution of instructions 2 and 3 is
strictly dependent on the result $r3 of the 1d.w (load from
memory) instruction 1. In fact, there is a RAW dependency
between 1 and 2 and between 1 and 3. This means that, unless

This work was supported in part by the EC under grant MULTICUBE
FP7-216693

{gpalermo, zaccaria, silvano}@elet.polimi.it

$r3 is known a-priori, both 2 and 3 should be serialized with
respect to 1. A load value predictor allows to predict $r3
before instruction 1 has been completed to start both 2 and
3 earlier (and in parallel). This is done through a prediction
whose outcome is checked before 2 and 3 are committed. The
temporary buffer used for storing those intermediate results
is typically called a re-order buffer (ROB). Whenever the
prediction is verified to be wrong, a recovery mechanism is
activated. In the previous case, this consist of squashing both
instructions 2 and 3 from the ROB buffer and re-execute them
with the actual value of $r3.

Traditional value prediction techniques have been increas-
ingly challenged by the advent of mobile, battery-operated
devices due to the significant amount of energy consumption.
This is essentially due to the on-chip memory required for
computing the prediction and the overall number of accesses
to the predictor itself. In this work we introduce and analyze a
selective value predictor which is triggered selectively only
during specific cache miss events. In particular, we show that
this kind of predictor allows to:

o Reduce the overall number of accesses and the energy
consumption of the on-chip memory and logic reserved
to the value speculation.

Improve over traditional value predictors [2] in terms of
performance and energy consumption.

Create room for a reduction of the data-cache size by
preserving performance, thus enabling a reduction of the
system cost.

The paper is organized as follows. Section II introduces the
state-of-the art of value prediction techniques. Section III in-
troduces the target architecture and the proposed energy-aware
load value predictor, while Section IV describes the experi-
mental results obtained on an Alpha AXP 21264 architecture.
Finally, Section V summarizes the relevant contributions of
this work.

II. STATE-OF-THE-ART VALUE PREDICTION

Lipasti et al. [2] originally introduced the Load Value Pre-
diction as a new data-speculative micro-architectural technique
exploiting the concept of value locality and the dynamic
correlation between 1d.w instruction address and its actual
value.

An initial power analysis on value predictors has been
presented in [3] and [4]. In both papers, the authors claimed
that for a power efficient value prediction implementation
designers have to limit the complexity of the predictor (such
as the usage of a simple last value predictor), limiting also
the number of access ports. In [3] the authors show that the

dynamic classification done by the value predictor (predictable
or unpredictable) can be used also to activate or deactivate
architecture low-power modes. In [4] the authors have shown
that a non-selective value prediction approach can cause in
some case a noticeable performance and energy degradation.
Other value predictors like the stride-, context- and perceptron-
based, have been proposed in earlier work [5] for register-
centric value prediction.

Different architectural support techniques for value predic-
tion are presented in [6]-[9]. Calder et al. [6] proposed some
selective techniques in order to reduce the pressure on the
prediction tables, by filtering the instructions that accessed
these resources. The ideal case is to dynamically select those
instructions that belong to current longest data dependency
chain as recognized in the instruction window (critical path).

In [7] a Checkpoint-Assisted VAlue prediction (CAVA)
has been proposed to hide L2 cache misses through data
value prediction. For each L2 miss, the architectural state is
check-pointed before entering the speculative mode. When the
1d.w is resolved, the prediction is checked and in case of
misprediction the hardware rolls back the architectural state
to the checkpoint.

Checkpoint-free load value prediction is presented in [8].
In this work, speculative instructions remain in the issue
queue, since no check-point is made. When the actual data
is received from memory, the speculative instructions are
always discarded and re-executed. In this case, the speculative
execution is essentially employed for pre-fetching.

Finally, a value prediction technique for SMT architectures
is presented in [9]. The authors propose to create a checkpoint
on a long latency 1d.w instruction, as in [7], but instead of
using the same thread context, a speculative thread using the
predicted value is spawn in another thread context.

The main difference between the analysis presented in
this paper and the previous ones is that we present a load
value predictor method that selectively predicts only 1d.w
instructions that miss the level 1 data cache, attenuating the
misprediction probability and reducing the hardware cost of
the speculative micro-architecture. Moreover, the usage of
a simple last value predictor as suggested in [3] requires
less additional hardware enabling reduced energy consumption
than traditional approaches.

III. LOW-ENERGY SELECTIVE LOAD VALUE PREDICTION
(SLVP)

The basic idea of the proposed predictor is to reduce the
load pressure and thus the overall number of accesses to
the predictor tables. In fact, the predictor is accessed only
whenever a miss in the level 1 cache is detected. This action
is performed in the initial evaluation stages of each 1d.w
instruction and it has a minimum delay which corresponds
to the time needed for the tag check in the L1 cache.

Figure 1 shows the basic architecture of the predictor. It
essentially consists of a small cache which is accessed by
using the program counter of the 1d.w instruction that had a
miss in the L1 cache. Since we are using a 64 bit architecture,
both the program counter and the size of the loads are 64 bit.
The prediction policy is managed through a 2-bit saturating

confidence counter with two unpredictable and two predictable
states [1] (CR).

Load value prediction table
(LPVT)

Load Program Counter (64 bit)

Tag Index Offset TAG CR VL
(52 bits) (10 bits) | (2bits) (52 bits) (2 bits) (64 bits)

£
i

Hit/miss

Confidence Prediction

Fig. 1. The architecture of the selective load value predictor (SLVP).

Value prediction. In the case of a hit in the SLVP (checked
by means of the TAG field), the corresponding CR is evaluated.
If CR is in an unpredictable state, no prediction is performed
and the dependent instructions are put on hold until the actual
1d.w instruction has accessed the memory. Otherwise the data
value (VL) from the selected SLVP entry is speculatively for-
warded to the dependent instructions and the 1d.w instruction
is marked as speculative in the ROB.

Critical load commit. When a critical 1d.w instruction
has been executed (during the commit stage of the pipeline)
the architecture checks if the predicted value VL is equal to
the actual value of the 1d.w instruction. In the case of miss-
prediction, the dependent instructions are squashed from the
ROB and re-executed. In the experimental section we consider
an average recovery time of 7 cycles.

Load value predictor update. During the commit stage,
every critical 1d.w instruction updates the CR field. Whenever
a misprediction has occurred, the VL field is also updated
with the actual value of the 1d.w. If an initial SLVP miss was
detected, an entry is evicted from the SLVP (without any write-
back) and allocated to the most recent 1d.w. The selective
approach enables the predictions only for loads with a miss in
the L1 data cache. Therefore, the prediction latency consists in
the L1 data cache tag check and the SLVP access latency. To
compute the overall latency, we considered the architecture
shown in Table I and a SLVP table of 1024 entries®. Cacti
[11] reported a data cache tag check latency of 2 cycles and
a SLVP access latency of 1 cycle. Thus, the overall latency of
the proposed selective approach is 3 cycles.

IV. DESIGN SPACE EXPLORATION OF THE SLVP

In this section we present the results of the design space
exploration of the selective load value predictor proposed in
this paper. We first introduce the target architecture and the
benchmark suite used for the exploration; we then present
some experimental evidence on the benefits of using such kind
of predictor in a super-scalar (plain and SMT) architecture.

The target architecture. The target architecture is a su-
perscalar Alpha AXP 21264. We will consider a plain Alpha
AXP and an SMT-enhanced Alpha AXP. To derive both

2A preliminary exploration presenting the impact of the table size on the
prediction accuracy can be found in [10]

performance and energy consumption of the Alpha AXP,
we used the M-SIM V2.0 simulation framework [12]. The
simulator supports the execution of unmodified, statically
linked Alpha AXP binaries and it exploits the Wattch models
[13] to provide the energy consumption of the architectural
components. For the performance estimation, M-SIM extends
the SimpleScalar tool-set [14] with accurate models of the
pipeline structures, including explicit register renaming, and
support for the concurrent execution of multiple threads
(SMT). In SMT mode, some processor structures (i.e. issue
queue, physical register files, functional units, caches) are
shared among the threads, while other structures (rename
tables, ROBs, Load/Store Queues, branch and value predictors)
are private to each thread.

Table I presents some important parameters of the simulated
architecture. Memory and cache latencies have been computed
by using [11]. Although the basic Alpha AXP architecture
does not present any load value predictor, Table I shows also
the architectural configuration of the SLVP. While the SLVP
access latency is 1 cycle only, the prediction latency due to
the selective value predictor is higher (3 cycles) as explained
in the previous section.

Experimental setup. All the following simulation results
are generated by running 1 billion instructions for each of the
SPEC 2000 benchmarks [15], skipping the first 300 million
instructions to avoid cold start and transient effects.

For the superscalar architecture we evaluated six floating-
point benchmarks (applu, equake, galgel, lucas, mesa,
mgrid) and seven integer benchmarks: computation intensive
(bzip, gcc, gzip) and memory intensive (mcf, parser,
twolf, vpr). The workload for the SMT mode has been
generated combining randomly 2 applications from the same
benchmark set.

TABLE 1
ARCHITECTURE CONFIGURATION

Processor

Frequency 1.2 GHz @ 80nm
Branch predictor Bimodal predictor 2K entries
Fetch / Decode / Issue / Commit width 4747474
Register File size 128 INT + 128 FP
Fetch queue size 32 entries

ROB size 128 entries
Load/Store queue size 48 entries

Integer ALU #units / latency 4/ 1 cycle

Integer MUL-DIV #units / latency 1/ 3(MUL) - 20(DIV) cycles
Floating Point ALU #units / latency 4/ 2 cycles

Floating Point MUL-DIV #units / latency | 1/ 4(MUL) - 12(DIV) cycles

Caches and Memory

L1 I$ size/associativity/block

L1 D$ size/associativity/block

L2$ size/associativity/block

L1 I$ /L1 D$ / L2$ access latency
Memory access latency

64KB / 2-way / 64B
64KB / 2-way/ 64B
4MB / 8-way / 64B
2 /217 14 cycles
270 cycles

Load Value Prediction Table

SLVP size
SLVP access latency

1024 entries, direct mapped
1 cycle

Selective vs. Non-selective Load Value Predictor. Figure
2 and Figure 3 show, respectively, the IPC speed-up and
the energy reduction with respect to a baseline Alpha AXP
architecture (without any predictor) of the proposed selective
predictor (SLVP) versus a non-selective, state-of-the-art pre-
dictor (LVPT) as presented in [2].

20,00 s

HSLVP LILVPT
15,00
g
a 10,00
3
°
v
v
&
& 5,00 I ’
g
000 (M m i\lw N I\.:.‘I‘
N e @ & R e S RS
’bQQ 0Q \;S# %’b\% & Q}\ \0(,7’ & /\(\Q,‘o 6\%\ Q’b@ “&0 K
-5,00
Fig. 2. Instruction-per-cycle speed-up of the SLVP and LVPT with respect

to the baseline architecture.

25,00

HsLvp LVPT

20,00

15,00

10,00

Energy Reduction [%]

5,00

0,00 I\ -

> v &
QQQ\ S &
1O
-5,00 @

d & X

. L
é\%\ ’b& \.“\0 K

> . «
¥ & F&F &
§

&

Fig. 3. Overall energy consumption improvement of the SLVP and LVPT
with respect to the baseline architecture.

It can be seen that the SLVP has advantages both in terms of
IPC and energy with respect to both the baseline architecture
and the LVPT-enhanced one. This derives from the fact that
SLVP is only triggered on 1d.w instructions that miss the
L1 cache while LVPT suffers from more load pressure, being
it triggered at every 1d.w instruction. We can also note that
some specific benchmarks are more susceptible than others
(e.g., lucas and mgrid) to performance improvements. This
is due to two facts that are summarized in Figure 4:

1) they present a very high SLVP prediction accuracy.
2) they present a high number of 1d.w instructions that
miss both the first and the second level of cache.

Energy-Performance Design Space Exploration. In this
section, we present a design space exploration analysis of the
proposed SLVP predictor by analyzing the correlation with
the size of the level 1 data cache. Here we focus on the SLVP
since the previous analysis has shown the advantages of this
technique with respect to the LVPT solution. In particular, we
analyze the behavior of the SLVP by considering the Alpha
AXP architecture in plain (superscalar) and SMT mode.

For the following exploration, we show the behavior of the
SLVP when the size of the level 1 data cache is continuosly
halved up to 1/8 of the original size, reduced to 32KB, 16KB
and 8Kb (see Figure 5).

Figure 5(a) shows that, for both the baseline and the SLVP-

25
0,9
0,8
20 o
&
= g0,7
§ 15 gO,G
k- w
S £
3 5 05
a (-9
& 2
S 10 E 04
-3 ©
> [
a 203
5
5 0,2
J 011 J
o WMN N wll i o Mo M M all_
SN g 8 ey T 5 e = % P
23fs8gfEisees 22ERU§8EEERSE
§E2% 2T ePgs s8g% = Egg?
g

(a) SLVP misprediction rate (b) Level 2 cache miss rate

Fig. 4. SLVP misprediction rate and level 2 cache miss rate for the considered
set of benchmarks.

#SLVP M1/2D$ A 1/2D$ +SLVP X 1/4D$ X1/4D$+SLVP ©1/8D$ 1/8D$ + SLVP
12
¢ A
8 X
g
a 4
3
°
0
[
&
g ° L]
= 0 4 X 8 12
-4
-8 .
Energy Reduction [%]
(a) Superscalar case
#sLvP M 1/2D$ A1/2D$ +SLVP X 1/4D$ X 1/4D$ +SLVP © 1/8D$ ' 1/8D$ + SLVP
16 .
A
12
X
8
g
S 4
°
0
& o
3 |]
-8 0 4 X 8 12
-4
)
-8
-12

Energy Reduction [%]

(b) SMT case

Fig. 5. Scatter plot of energy and performance average improvements of the
SLVP when the level 1 data cache is varied.

enhanced superscalar case, decreasing the cache size has a
positive effect on the energy reduction up to quartering the
cache (with and w/o the SLVP). In fact, the configuration
obtatined by quartering the cache results a limit for the En-
ergy/Performance trade-off. However, SLVP helps maintaining
a positive IPC and energy speed-up, while on the baseline
architecture the IPC speed-up is negative.

Figure 5(b) shows a similar behavior for the SMT case with
the exception of the entity of the negative effects when passing
from 1/4D$ to 1/8D$ configuration, that is higher for the SMT
case. This can be due to the fact that, in the SMT case, the
data cache has a higher pressure; reducing the size of the
cache means more cache misses and, thus, more pressure on
the SLVP. This, in turn, further decreases the SLVP prediction
accuracy and reduces the advantages in terms of IPC and
energy.

V. CONCLUSIONS

This paper presented a design space exploration of a selec-
tive load value prediction scheme suitable for energy-aware
Simultaneous Multi-Threaded (SMT) architectures. We have
shown that a selective load value prediction can reduce the
overall number of accesses and the energy consumption of
the on-chip memory and create room for a reduction of the
data-cache size by preserving performance, thus enabling a re-
duction of the system cost with respect to previous approaches.

REFERENCES

[1] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, 2nd edition, 1996.

[2] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen.

Value locality and load value prediction. In ASPLOS-VII: Proceedings

of the seventh international conference on Architectural support for

programming languages and operating systems, pages 138—147, New

York, NY, USA, 1996. ACM.

Toshinori Sato and Itsujiro Arita. Reducing energy consumption via

low-cost value prediction. In PATMOS °02: Proceedings of the 12th

International Workshop on Integrated Circuit Design. Power and Timing

Modeling, Optimization and Simulation, pages 380-389, London, UK,

2002. Springer-Verlag.

[4] Ravi Bhargava and Lizy K. John. Latency and energy aware value
prediction for high-frequency processors. In ICS '02: Proceedings of
the 16th international conference on Supercomputing, pages 45-56, New
York, NY, USA, 2002. ACM.

[5] L.N. Vintan, A. Florea, and A. Gellert. Focalising dynamic value
prediction to cpu’s context. IEE Proceedings - Computers and Digital
Techniques, 152(4):473-481, 2005.

[6] Brad Calder, Glenn Reinman, and Dean M. Tullsen. Selective value
prediction. In ISCA ’99: Proceedings of the 26th annual international
symposium on Computer architecture, pages 64—74, Washington, DC,
USA, 1999. IEEE Computer Society.

[7]1 Luis Ceze, Karin Strauss, James Tuck, Josep Torrellas, and Jose Renau.
Cava: Using checkpoint-assisted value prediction to hide 12 misses. ACM
Transactions on Architecture and Code Optimization, (3), 2006.

[8] Huiyang Zhou and Thomas M. Conte. Enhancing memory level
parallelism via recovery-free value prediction. In Proceedings of the 17th
International Conference on Supercomputing, pages 326-335, 2003.

[9] Nathan Tuck and Dean M. Tullsen. Multithreaded value prediction.
In HPCA ’05: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, pages 5—15, Washington, DC,
USA, 2005. IEEE Computer Society.

[10] Arpad Gellert, Adrian Florea, and Lucian N. Vintan. Exploiting selective
instruction reuse and value prediction in a superscalar architecture.
Journal of Systems Architecture, 55(3):188-195, 2009.

[11] S. Wilton and N. Jouppi. CACTI:An Enhanced Cache Access and Cycle
Time Model. volume 31, pages 677-688, 1996.

[12] J. Sharkey, D. Ponomarev, and K. Ghose. M-sim: a flexible, multi-
threaded architectural simulation environment. Technical Report CS-
TR-05-DP01, Department of Computer Science, State University of New
York at Binghamton, 2005.

[13] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a
framework for architectural-level power analysis and optimizations.
In Proceedings ISCA 2000: International Symposium on Computer
Architecture, pages 83-94, 2000.

[14] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating future
microprocessors: The simplescalar tool set. Technical Report CS-TR-
1996-1308, University of Wisconsin, 1996.

[15] John L. Henning. Spec cpu2000: Measuring cpu performance in the
new millennium. Computer, 33(7):28-35, 2000.

[3

=

