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Abstract. The majority of currently available dynamic branch predictors base 
their prediction accuracy on the previous k branch outcomes. Such predictors 
sustain high prediction accuracy but they do not consider the impact of 
unbiased branches, which are difficult-to-predict. In this paper, we evaluate the 
impact of unbiased branches in terms of prediction accuracy on a range of 
branch difference predictors using prediction by partial matching, multiple 
Markov prediction and neural-based prediction. Since our focus is on the 
impact that unbiased branches have on processor performance, timing issues 
and hardware costs are out of scope of this investigation. Our simulation results, 
with the SPEC2000 integer benchmark suite, are interesting even though they 
show that unbiased branches still restrict the ceiling of branch prediction and 
therefore accurately predicting unbiased branches remains an open problem. 
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1.   Introduction 

In a previous paper [1] we showed that a branch in a certain dynamic context is 
difficult-to-predict when that branch is unbiased and its outcomes are non-
deterministically shuffled. A branch is unbiased if its behaviour does not demonstrate 
a tendency to either the taken or the not taken path. We quantified and demonstrated 
that the percentages of difficult-to-predict branches in the SPECcpu2000 benchmarks 
suite [2] are significant (averaging between 6% and 24%, depending on the type of 
branch prediction context and the prediction context length). We considered the 
ceiling of history context-based prediction to be around 94% if the feature set length 
of 28 bits is used. Furthermore, we showed that many current state-of-the-art 
conventional branch predictors are unable to accurately predict these unbiased 
branches. This is because current branch predictors only use a limited amount of 
prediction information, such as local- or/and global-correlations and path-based 
information. The use of such limited information means that unbiased branches 



cannot be predicted to a high degree of accuracy. Consequently, other information is 
required to predict branches which have been classified as unbiased. In this paper we 
investigate the use of a branch condition sign. The condition sign can be either 
positive, negative or zero. The condition sign is the difference between the data 
operands held within each source register. For example, a positive condition sign is 
computed if the datum in the first source register is greater than the datum in the 
second source register, and vice-versa for a negative condition sign, and zero if the 
data show equality. We show that branch behaviour is predictable by predicting the 
condition sign because branch’s output is deterministically correlated with the 
condition’s sign, but the impact of unbiased branches remains significantly high. 

2.   Related Work 

Smith [3] showed that the majority of mispredicted branches come from few static 
branches. He also showed that a context-predictor where the last ‘n’ (as low as 2) data 
values produced or consumed are used in combination with a closing outer-loop 
counter can achieve better prediction accuracy than a conventional gshare predictor. 
 Heil [4] introduced the idea of a Branch Difference Predictor (BDP) which 
simply holds branch source register differences. Heil used these data-value 
differences as inputs into a Rare Event Predictor (REP). The Rare Event Predictor 
was used to predict difficult-to-predict branches and the majority of easy-to-predict 
branches were predicted with a conventional gshare predictor. In Heil’s study a 
difficult-to-predict branch was a branch that was mispredicted by a conventional 
gshare predictor. In contrast to Heil, we define in [1] a difficult-to-predict branch to 
be a branch with a low degree of polarisation since that tends to shuffle between taken 
and not-taken and is therefore unbiased. Heil used the differences in the register data 
values as inputs to the REP (up to a maximum of 3 value differences), whereas in our 
study we use the sign of the differences (up to a history of 256 sign differences) 
between the register data values. We therefore use less storage and our simulation 
results show that we achieve better prediction accuracy. 

In [5], González introduced the concept of branch prediction through value 
prediction (BPVP).  The idea was to pre-compute a branch outcome by speculatively 
predicting the source operand as each branch is dynamically encountered. González’s 
prediction strategy was to use a conventional gshare in conjunction with a BPVP. The 
inclusion of the BPVP was to predict the branches that were difficult-to-predict by the 
conventional gshare predictor. González therefore has a similar approach to Heil. 

Vintan [6] proposed pre-computing branches by determining a branch 
outcome as soon that branch’s operands were available. The basis behind such pre-
computation was that the instruction that produced the last branch source operand 
would also trigger the branch condition estimation. This means that as soon as this 
operation was completed then the branch outcome could be immediately resolved. 
Even though this concept would provide (almost) perfect prediction accuracy, there 
was a heavy timing penalty in the case when a branch instruction is dynamically 
executed immediately after the last source operand has been computed, in fact this is a 
common case. 



 Gao [7] implemented a Prediction by Partial Matching (PPM) predictor that 
predicts branch outcomes by combining multiple partial matches through an adder 
tree. The Prediction by combining Multiple Partial Matches (PMPM) algorithm 
selects up to L confident longest matches and sums the corresponding counters that 
are used to furnish a prediction. A bimodal predictor is used to predict branches that 
are completely biased (either always taken or always not taken) and the PMPM 
predictor is used to furnish a prediction when a branch is not completely biased. In 
this study we also implement a PPM predictor, but our PPM predictor has three 
significant differences.  First, our Branch Difference Prediction by Combining 
Multiple Partial Matches (BPCMP) furnishes predictions for unbiased branches 
identified in our previous work [1, 8] instead of not completely biased branches. 
Second, in Gao’s study global branch history information was used, whereas we use a 
combination of global and local branch difference history information. Finally, Gao 
used an adder tree algorithm to combine multiple Markov predictions, we use one of 
two voting algorithms. 
 Jiménez [9] proposed a neural predictor that uses fast single-layer 
perceptrons. In his first perceptron-based predictor the branch address is hashed to 
select the perceptron, which is then used to furnish a prediction based on global 
branch history. Jiménez [10] furthered his work by developing a perceptron-based 
predictor that uses both local and global branch history information. We also evaluate 
a perceptron-based predictor, but unlike Jiménez our inputs are based on global and 
local branch operand difference information. In [11] Jiménez developed a piecewise 
linear predictor using a piecewise linear function the idea being to exploit different 
paths leading to the branch undergoing prediction. We have also evaluated a 
piecewise linear predictor on the unbiased branches as described in [12]. 

3.   Unbiased Branches 

In [1] we define an unbiased branch to be a branch that does not demonstrate a bias to 
either the taken or the not taken path which means unbiased branches show a low 
degree of polarisation towards a specific prediction context (by which we mean, a 
local prediction context or a global prediction context or a path-based prediction 
context) and are therefore difficult-to-predict by that particular prediction context. 

We also identified branches that were unbiased on their local and global 
history contexts and, on their global history XORed with the branch address. Our 
results showed that even with a feature set length of 28 bits the number of unbiased 
branches remained significantly high at just over 6%. We therefore considered the 
ceiling of history context-based prediction to be around 94%. 

3.1.   Condition-History-Based Branch Prediction Using Markov Models 

A context-based predictor [13] predicts the next datum value based on a particular 
stored pattern that is repetitively generated in the values’ sequence. This means that, a 
context-based predictor could predict any stochastic repetitive sequence. Value 
predictors that implement the PPM algorithm represent an important class of context-



based predictors. In a PPM predictor, if a prediction cannot be furnished by order k 
then the pattern length is shortened and the Markov predictor of order k-1 is used to 
furnish the prediction and if this order cannot furnish a prediction the order is further 
reduced to k-2 and so on until either a prediction is furnished or the Markov predictor 
is of the order 0. 

3.1.1.   Local Branch Difference Predictor 

In Figure 1 we show the mechanism of our local PPM Branch Difference Predictor. 
The Branch Difference History Table (BDHT) is indexed by the branch address (B0). 
In the case of a hit in the BDHT, the last h dynamic source operand differences are 
furnished. To save storage space, sign operand differences are recorded as +1, -1 or 0.  
For each dynamic branch encountered, a positive difference is recorded if the first 
source operand is greater than the second, a negative difference is recorded if the first 
source operand is less than the second source operand and zero is recorded if both 
operands are the same. The h difference fields of the BDHT entry are then used as 
inputs into our complete-PPM predictor. The PPM predictor furnishes the predicted 
sign value of the branch undergoing execution (B0) of order k, where k<h. Speculative 
execution of the branch (B0) only occurs in the case that the pattern length k is 
repeated in the last h differences with a frequency greater than or equal to a threshold 
value. 
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Figure 1. A local complete-PPM branch-difference predictor 

3.1.2   Combined Global and Local Branch Difference Predictor 

Figure 2 shows the branch prediction mechanism using a combined global and local 
PPM-based branch-difference predictor. The Global History Register (GHR) contains 
the global branch difference history pattern. Every global branch history pattern has 
its own BDHT and the GHR history pattern is used as an index to its BDHT. Each 
BDHT is configured as a local BDHT and is accessed as described in section 3.1.1. 
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Figure 2. A global and local complete-PPM branch-difference predictor 

3.1.3.   Branch Difference Prediction by Combining Multiple Partial Matches 

Figure 3 shows our branch prediction mechanism using the Branch Difference 
Prediction by Combining Multiple Partial Matches (BPCMP). An entry in the BDHT 
is accessed by the method described in section 3.1.1, but now the h branch differences 
are used as inputs into multiple Markov predictors of different orders (n where n < h). 
Each Markov predictor furnishes a predicted sign value (+1, -1 or 0) and these 
multiple predictions are passed to a voter. The final value prediction is then furnished 
as the greatest sign frequency that was input into the voter. 
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Figure 3. Multiple Markov branch-difference prediction 



We have also investigated a confidence-based voting mechanism. The 
function field of each entry in the BDHT holds n saturated confidence counters, in the 
range -4 to +4, which are associated with the n Markov predictors. For a pattern 
length k, where 1≤ k≤ n, the Markov predictors will furnish a value prediction if that 
repeating pattern is stored at least once in its h history values. In the case of a 
correctly predicted branch, the confidence saturating counter is incremented and 
decremented in the case of a misprediction. Each Markov prediction is then replicated 
to match its confidence counter, so long as that confidence counter is >0. These 
multiple value predictions are then passed to the voter, which furnishes the most 
frequent value prediction. 

4.   Simulations 

We have developed a number of simulators (as described in section 3) which extend 
the sim-bpred simulator provided in SimpleSim-3.0 [14]. We also include 
implementations to identify unbiased branches as presented in [1, 8]. We have 
evaluated our simulators using the unbiased branches we identified in [1] on the 
SPEC2000 benchmark suite [2]. All simulation results are reported on 1 billion 
dynamic instructions skipping the first 300 million instructions. We emphasise that 
our investigation is about the identification and the impact that unbiased branches 
have on dynamic branch prediction and therefore realistic hardware costs and timings 
are out of scope of this investigation. 

4.1.   Local Branch Difference Prediction 

We set out to determine the optimal local branch difference predictor. We asked 
ourselves 5 questions. Would the operand sign value difference algorithm achieve 
better prediction accuracy than the operand value difference? Which local history 
register length would provide the best prediction accuracy? Which pattern length 
would achieve the best prediction accuracy? What is the most suitable threshold 
value? What is the ideal number of local BDHT entries?  

In Figure 4 we answer the first two questions: What would be the most 
suitable sign algorithm to use and, which history register length achieves the best 
prediction accuracy? We identified unbiased branches the same way as in our 
previous work [1], and we evaluated the impact of these unbiased branches using a 
complete PPM predictor with a local BDHT. The BDHT we used was sufficiently 
large to ensure that every static branch had its own entry thereby eliminating any 
possibility of collisions. The pattern length was set to 3, the threshold value was set to 
1, and the local history register length was varied from 8-signs to 64-signs in 
increments of 8. Our results show that better prediction accuracy is achieved by the 
operand sign difference algorithm rather than the operand value difference algorithm 
and that beyond a local history register length of 24-signs there is only marginal 
improvement in prediction accuracy. The reason that the operand sign difference 
algorithm outperforms the operand value difference algorithm is due to the increased 



amount of correlation information used by the sign difference algorithm. The 
frequency of information used by the operand value difference algorithm is low and 
therefore correlation is low, whereas the frequency of information used by the 
operand sign difference algorithm is high and therefore correlation is high. 
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Figure 4. Average difference prediction accuracy with increasing local history register length 

of the sign difference and operand difference algorithms 

In Figure 5 we answer the third question: Which pattern length would achieve the best 
prediction accuracy? We used a complete PPM predictor with the operand sign 
difference algorithm, a local history register length of 24-signs and the threshold 
value was set to 1. Our results show that initially prediction accuracy improves with 
increasing pattern length and then decreases and these results confirm that our 
original pattern length of 3 achieves the best prediction accuracy. 
 In Figure 6 we answer the fourth question: What is the most suitable 
threshold value? We used the same parameters as Figure 5, but the pattern length was 
now set to 3 and the threshold value varied. Our results show that prediction accuracy 
improves with an increasing threshold value, but there is marginal, if any, benefit of 
increasing the threshold value beyond 7. 

In Figure 7 we answer the final question: What would be the optimal number 
of entries in the local BDHT? We used the same parameters as Figure 6, and the 
number of entries in the local BDHT was varied from 64 entries to 256 entries in 
increments of 64. We also include an unlimited local BDHT. Our results show that 
the impact of the so called 3Cs (capacity, collisions and cold-start) to be minimal with 
a 256 entry local BDHT and that there is minimal prediction accuracy gain by 
increasing the number of entries beyond 256 entries where the increased number of 
cold-start mispredictions may impact on prediction accuracy. 
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Figure 5. Average difference prediction accuracy with increasing pattern length 

65%

75%

85%

95%

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8

Threshold

Pr
ed

ic
tio

n 
ac

cu
ra

cy

All
Unbiased

 
Figure 6. Average difference prediction accuracy with increasing threshold value 
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Figure 7. Average difference prediction accuracy with an increase in the number of local 

BDHT entries 

We investigated the branch prediction accuracies of the individual SPEC2000 
benchmarks using our optimal local branch difference predictor. We used the operand 
sign difference algorithm, with a local history register length of 24-signs, a pattern 
length of 3, and we use a local 256 entry BDHT. In our results we compare two 



threshold values, 1 and 7. When the threshold value is 1, we achieve an average 
branch prediction accuracy of 90.55% and the unbiased branches have an average 
branch prediction accuracy of 71.76%. When the threshold value is increased to 7, we 
achieve an average branch prediction accuracy of 96.43% and the unbiased branches 
have a prediction accuracy of 76.69%. These results show the significance of the 
threshold value on prediction accuracy and the impact of unbiased branches. 
Consequently, unbiased branches in this local context remain difficult-to-predict. 

4.2.   Combined Global and Local Branch Difference Prediction 

We consider the high number of unbiased branches and their impact on prediction 
accuracy to be due to their high degree of shuffling. To alleviate the problem of 
shuffled branch behaviour of unbiased branches we have developed a combined 
global and local branch difference predictor which would convert an unbiased branch 
in a local context into a biased branch in a global context, and therefore a difficult-to-
predict branch in a local context would be an easy-to-predict branch in a global 
context. 

In our global and local branch difference predictor, each global history 
pattern is used to point to its own local BDHT as described in section 3.1.2 and shown 
in Figure 2. Consequently, we restrict the global history register length to a maximum 
of 4-signs. The parameters of each of the local BDHTs were the same as those which 
achieved the results shown in Figure 7, except we used a 256 entry BDHT. 
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Figure 8. Combined global and local difference prediction accuracy 

In Figure 8 the global history register length of 0 represents the optimal local branch 
difference predictor whose results are provided in Figure 7, with a 256 entry BDHT. 
With the combined global and local difference predictor, as the global history register 
length is increased there is a marginal improvement in prediction accuracy. With a 
global history register length of 4-signs and a threshold value of 1, the combined 
global and local branch difference predictor achieves an average prediction accuracy 
of 90.47%, but the unbiased branches only achieve an average prediction accuracy of 
68.81% showing a marginal improvement over the local branch difference predictor. 
When the threshold value is increased to 7, the average prediction accuracy improves 
to 97.44% and the average prediction accuracy of unbiased branches is still significant 
at 81.25%. Even though there is some improvement in prediction accuracy, these 



results show that the impact of unbiased branches still remains significant and 
therefore implies that alternative approaches are required. 

4.3.   Branch Difference Prediction by Combining Multiple Partial Matches 

Our first alternative approach was to develop a branch difference predictor using five 
Markov predictors of orders ranging between 1 and 5 (as described in section 3.1.3 
and shown in Figure 3). Again, we use a 256 entry local BDHT, a local history 
register length of 24-signs; we compare the prediction accuracy of two voting 
algorithms, a simple voting algorithm and a confidence voting algorithm. Our results 
show that the average prediction accuracy of the confidence voting algorithm is 
marginally better than the simple voting algorithm, as shown in Figure 9. 
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Figure 9. Difference prediction accuracies by combining multiple partial matches through 

simple voting and confidence-based voting 

4.4.   Neural-based Branch Difference Global and Local Prediction 

In our second alternative approach we developed a family of neural-based branch 
difference predictors. Our neural predictors are fast single-layer perceptron predictors 
similar to those developed by Jiménez [9]. For a fair comparison with our 256 entries 
local BDHT we use a perceptron table with 256 entries. Our single-layer perceptron 
predictors use global history information only or local history information only or a 
combination of global and local history information. 

To determine our optimal single-layer perceptron predictor, we vary the 
input history register lengths. Not surprisingly, the combination of global and local 
history information outperforms the other two predictors. We found that the best 
average prediction accuracy of 92.58% was achieved with a 40-global history signs 
combination with 28-local history signs. However, the unbiased branches still have a 
significant impact with an average prediction accuracy of 73.46%. 

Finally, we considered the impact of unbiased branches on a piecewise linear 
predictor based on [11]. We dynamically changed the global history input from 18- to 



48-bits combined with local history input from 1- to 16-bits. We achieved an average 
prediction accuracy of 94.2% on all branches but the impact of unbiased branches still 
remained significant at 77.3%. 

4.5.   Comparing all of the optimal predictors 

In Figure 10, we bring together the impact that unbiased branches have on all of the 
optimal predictors we have developed (local-PPM, combined-PPM and multiple 
Markov combined- perceptron and the piecewise linear branch predictor). Our results 
show that unbiased branches have a severe impact on all branch predictors and in all 
cases unbiased branches only have an average branch prediction accuracy of between 
71.54% (local-PPM) and 77.3% (piecewise linear branch predictor). 
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Figure 10. Branch prediction accuracy on unbiased branches 

5.   Conclusions 

In this study we have validated our previous findings in [1, 8] that current state-of-
the-art branch predictors correlate either insufficient information or wrong 
information in the prediction of unbiased branches. This led us to consider alternative 
approaches: the branch difference predictors using PPM and multiple Markov 
predictors and neural-based perceptron predictors. Our results show that unbiased 
branches still limit prediction accuracy even with these alternative approaches. The 
most effective branch predictor was the piecewise linear branch predictor, but even 
this predictor only achieved a prediction accuracy of 77.3% on the unbiased branches. 
 However, we have shown that the sign difference algorithm achieves better 
prediction accuracy than the operand difference algorithm. We also show that 
combined global and local information achieves better prediction accuracy than 
global information alone or local information alone. 
 In our opinion, the most optimal local branch difference predictor uses the 
operand sign difference algorithm, with a local history register length of 24, a pattern 
length of 3, a threshold value of 7 and a local BDHT with 256 entries. This predictor 



achieves an average prediction accuracy of 96.43% on all branches but on the 
unbiased branches only achieve a prediction accuracy of 79.69%.  

Also in our opinion, the impact of unbiased branches significantly restricts 
prediction accuracy. This means that accurate branch prediction of unbiased branches 
remains an open problem and such branches will continue to limit the ceiling of 
dynamic branch prediction. Perhaps an alternative mechanism might be to hand-shake 
scheduler support with dynamic branch prediction. The idea of the scheduler would 
be to remove as many branch instructions from the static code as possible and leave 
the remaining branches to be dynamically predicted. Yet another alternative could be 
to pursue the concepts of micro-threading [15] where small fragments of code are 
executed concurrently and the branch problem is no longer a major concern. 
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