
Unbiased Branches: An Open Problem

Arpad Gellert1, Adrian Florea1, Maria Vintan1, Colin Egan2, and Lucian Vintan1
1 Computer Science Department, “Lucian Blaga” University of Sibiu, Emil Cioran

Street, No. 4, 550025 Sibiu, Romania
{arpad.gellert, adrian.florea, lucian.vintan}@ulbsibiu.ro

2 School of Computer Science, University of Hertfordshire, Hatfield, College Lane,
AL10 9AB UK,
c.egan@herts.ac.uk

Abstract. The majority of currently available dynamic branch predictors base
their prediction accuracy on the previous k branch outcomes. Such predictors
sustain high prediction accuracy but they do not consider the impact of
unbiased branches, which are difficult-to-predict. In this paper, we evaluate the
impact of unbiased branches in terms of prediction accuracy on a range of
branch difference predictors using prediction by partial matching, multiple
Markov prediction and neural-based prediction. Since our focus is on the
impact that unbiased branches have on processor performance, timing issues
and hardware costs are out of scope of this investigation. Our simulation results,
with the SPEC2000 integer benchmark suite, are interesting even though they
show that unbiased branches still restrict the ceiling of branch prediction and
therefore accurately predicting unbiased branches remains an open problem.

Keywords: branch prediction, unbiased branch, branch difference value
prediction

1. Introduction

In a previous paper [1] we showed that a branch in a certain dynamic context is
difficult-to-predict when that branch is unbiased and its outcomes are non-
deterministically shuffled. A branch is unbiased if its behaviour does not demonstrate
a tendency to either the taken or the not taken path. We quantified and demonstrated
that the percentages of difficult-to-predict branches in the SPECcpu2000 benchmarks
suite [2] are significant (averaging between 6% and 24%, depending on the type of
branch prediction context and the prediction context length). We considered the
ceiling of history context-based prediction to be around 94% if the feature set length
of 28 bits is used. Furthermore, we showed that many current state-of-the-art
conventional branch predictors are unable to accurately predict these unbiased
branches. This is because current branch predictors only use a limited amount of
prediction information, such as local- or/and global-correlations and path-based
information. The use of such limited information means that unbiased branches

cannot be predicted to a high degree of accuracy. Consequently, other information is
required to predict branches which have been classified as unbiased. In this paper we
investigate the use of a branch condition sign. The condition sign can be either
positive, negative or zero. The condition sign is the difference between the data
operands held within each source register. For example, a positive condition sign is
computed if the datum in the first source register is greater than the datum in the
second source register, and vice-versa for a negative condition sign, and zero if the
data show equality. We show that branch behaviour is predictable by predicting the
condition sign because branch’s output is deterministically correlated with the
condition’s sign, but the impact of unbiased branches remains significantly high.

2. Related Work

Smith [3] showed that the majority of mispredicted branches come from few static
branches. He also showed that a context-predictor where the last ‘n’ (as low as 2) data
values produced or consumed are used in combination with a closing outer-loop
counter can achieve better prediction accuracy than a conventional gshare predictor.
 Heil [4] introduced the idea of a Branch Difference Predictor (BDP) which
simply holds branch source register differences. Heil used these data-value
differences as inputs into a Rare Event Predictor (REP). The Rare Event Predictor
was used to predict difficult-to-predict branches and the majority of easy-to-predict
branches were predicted with a conventional gshare predictor. In Heil’s study a
difficult-to-predict branch was a branch that was mispredicted by a conventional
gshare predictor. In contrast to Heil, we define in [1] a difficult-to-predict branch to
be a branch with a low degree of polarisation since that tends to shuffle between taken
and not-taken and is therefore unbiased. Heil used the differences in the register data
values as inputs to the REP (up to a maximum of 3 value differences), whereas in our
study we use the sign of the differences (up to a history of 256 sign differences)
between the register data values. We therefore use less storage and our simulation
results show that we achieve better prediction accuracy.

In [5], González introduced the concept of branch prediction through value
prediction (BPVP). The idea was to pre-compute a branch outcome by speculatively
predicting the source operand as each branch is dynamically encountered. González’s
prediction strategy was to use a conventional gshare in conjunction with a BPVP. The
inclusion of the BPVP was to predict the branches that were difficult-to-predict by the
conventional gshare predictor. González therefore has a similar approach to Heil.

Vintan [6] proposed pre-computing branches by determining a branch
outcome as soon that branch’s operands were available. The basis behind such pre-
computation was that the instruction that produced the last branch source operand
would also trigger the branch condition estimation. This means that as soon as this
operation was completed then the branch outcome could be immediately resolved.
Even though this concept would provide (almost) perfect prediction accuracy, there
was a heavy timing penalty in the case when a branch instruction is dynamically
executed immediately after the last source operand has been computed, in fact this is a
common case.

 Gao [7] implemented a Prediction by Partial Matching (PPM) predictor that
predicts branch outcomes by combining multiple partial matches through an adder
tree. The Prediction by combining Multiple Partial Matches (PMPM) algorithm
selects up to L confident longest matches and sums the corresponding counters that
are used to furnish a prediction. A bimodal predictor is used to predict branches that
are completely biased (either always taken or always not taken) and the PMPM
predictor is used to furnish a prediction when a branch is not completely biased. In
this study we also implement a PPM predictor, but our PPM predictor has three
significant differences. First, our Branch Difference Prediction by Combining
Multiple Partial Matches (BPCMP) furnishes predictions for unbiased branches
identified in our previous work [1, 8] instead of not completely biased branches.
Second, in Gao’s study global branch history information was used, whereas we use a
combination of global and local branch difference history information. Finally, Gao
used an adder tree algorithm to combine multiple Markov predictions, we use one of
two voting algorithms.
 Jiménez [9] proposed a neural predictor that uses fast single-layer
perceptrons. In his first perceptron-based predictor the branch address is hashed to
select the perceptron, which is then used to furnish a prediction based on global
branch history. Jiménez [10] furthered his work by developing a perceptron-based
predictor that uses both local and global branch history information. We also evaluate
a perceptron-based predictor, but unlike Jiménez our inputs are based on global and
local branch operand difference information. In [11] Jiménez developed a piecewise
linear predictor using a piecewise linear function the idea being to exploit different
paths leading to the branch undergoing prediction. We have also evaluated a
piecewise linear predictor on the unbiased branches as described in [12].

3. Unbiased Branches

In [1] we define an unbiased branch to be a branch that does not demonstrate a bias to
either the taken or the not taken path which means unbiased branches show a low
degree of polarisation towards a specific prediction context (by which we mean, a
local prediction context or a global prediction context or a path-based prediction
context) and are therefore difficult-to-predict by that particular prediction context.

We also identified branches that were unbiased on their local and global
history contexts and, on their global history XORed with the branch address. Our
results showed that even with a feature set length of 28 bits the number of unbiased
branches remained significantly high at just over 6%. We therefore considered the
ceiling of history context-based prediction to be around 94%.

3.1. Condition-History-Based Branch Prediction Using Markov Models

A context-based predictor [13] predicts the next datum value based on a particular
stored pattern that is repetitively generated in the values’ sequence. This means that, a
context-based predictor could predict any stochastic repetitive sequence. Value
predictors that implement the PPM algorithm represent an important class of context-

based predictors. In a PPM predictor, if a prediction cannot be furnished by order k
then the pattern length is shortened and the Markov predictor of order k-1 is used to
furnish the prediction and if this order cannot furnish a prediction the order is further
reduced to k-2 and so on until either a prediction is furnished or the Markov predictor
is of the order 0.

3.1.1. Local Branch Difference Predictor

In Figure 1 we show the mechanism of our local PPM Branch Difference Predictor.
The Branch Difference History Table (BDHT) is indexed by the branch address (B0).
In the case of a hit in the BDHT, the last h dynamic source operand differences are
furnished. To save storage space, sign operand differences are recorded as +1, -1 or 0.
For each dynamic branch encountered, a positive difference is recorded if the first
source operand is greater than the second, a negative difference is recorded if the first
source operand is less than the second source operand and zero is recorded if both
operands are the same. The h difference fields of the BDHT entry are then used as
inputs into our complete-PPM predictor. The PPM predictor furnishes the predicted
sign value of the branch undergoing execution (B0) of order k, where k<h. Speculative
execution of the branch (B0) only occurs in the case that the pattern length k is
repeated in the last h differences with a frequency greater than or equal to a threshold
value.

dif(Bh)

Branch Difference
History Table

Predicted
dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching
(PPM)

PC of B0

Pattern
length

Speculative
execution of B0

dif(Bh)

Branch Difference
History Table

Predicted
dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching
(PPM)

PC of B0PC of B0

Pattern
length

Speculative
execution of B0

Speculative
execution of B0

Figure 1. A local complete-PPM branch-difference predictor

3.1.2 Combined Global and Local Branch Difference Predictor

Figure 2 shows the branch prediction mechanism using a combined global and local
PPM-based branch-difference predictor. The Global History Register (GHR) contains
the global branch difference history pattern. Every global branch history pattern has
its own BDHT and the GHR history pattern is used as an index to its BDHT. Each
BDHT is configured as a local BDHT and is accessed as described in section 3.1.1.

Predicted
dif(B0)

Prediction by Partial Matching
(PPM)

PC of B0

Pattern
length

Speculative
execution of B0

GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Predicted
dif(B0)

Prediction by Partial Matching
(PPM)

PC of B0PC of B0

Pattern
length

Speculative
execution of B0

Speculative
execution of B0

GHR of B0GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Figure 2. A global and local complete-PPM branch-difference predictor

3.1.3. Branch Difference Prediction by Combining Multiple Partial Matches

Figure 3 shows our branch prediction mechanism using the Branch Difference
Prediction by Combining Multiple Partial Matches (BPCMP). An entry in the BDHT
is accessed by the method described in section 3.1.1, but now the h branch differences
are used as inputs into multiple Markov predictors of different orders (n where n < h).
Each Markov predictor furnishes a predicted sign value (+1, -1 or 0) and these
multiple predictions are passed to a voter. The final value prediction is then furnished
as the greatest sign frequency that was input into the voter.

PC of B0

Branch Difference
History Table (BDHT)

dif(Bh) dif(B2) dif(B1)

Predicted
dif(B0)

(-1, 0, +1)

Speculative
execution of B0

Markov
ord. 1

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Voter

Markov
ord. k

Markov
ord. n

PC of B0PC of B0

Branch Difference
History Table (BDHT)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

Predicted
dif(B0)

(-1, 0, +1)

Speculative
execution of B0

Speculative
execution of B0

Markov
ord. 1

Markov
ord. 1

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Voter

Markov
ord. k

Markov
ord. k

Markov
ord. n

Markov
ord. n

Figure 3. Multiple Markov branch-difference prediction

We have also investigated a confidence-based voting mechanism. The
function field of each entry in the BDHT holds n saturated confidence counters, in the
range -4 to +4, which are associated with the n Markov predictors. For a pattern
length k, where 1≤ k≤ n, the Markov predictors will furnish a value prediction if that
repeating pattern is stored at least once in its h history values. In the case of a
correctly predicted branch, the confidence saturating counter is incremented and
decremented in the case of a misprediction. Each Markov prediction is then replicated
to match its confidence counter, so long as that confidence counter is >0. These
multiple value predictions are then passed to the voter, which furnishes the most
frequent value prediction.

4. Simulations

We have developed a number of simulators (as described in section 3) which extend
the sim-bpred simulator provided in SimpleSim-3.0 [14]. We also include
implementations to identify unbiased branches as presented in [1, 8]. We have
evaluated our simulators using the unbiased branches we identified in [1] on the
SPEC2000 benchmark suite [2]. All simulation results are reported on 1 billion
dynamic instructions skipping the first 300 million instructions. We emphasise that
our investigation is about the identification and the impact that unbiased branches
have on dynamic branch prediction and therefore realistic hardware costs and timings
are out of scope of this investigation.

4.1. Local Branch Difference Prediction

We set out to determine the optimal local branch difference predictor. We asked
ourselves 5 questions. Would the operand sign value difference algorithm achieve
better prediction accuracy than the operand value difference? Which local history
register length would provide the best prediction accuracy? Which pattern length
would achieve the best prediction accuracy? What is the most suitable threshold
value? What is the ideal number of local BDHT entries?

In Figure 4 we answer the first two questions: What would be the most
suitable sign algorithm to use and, which history register length achieves the best
prediction accuracy? We identified unbiased branches the same way as in our
previous work [1], and we evaluated the impact of these unbiased branches using a
complete PPM predictor with a local BDHT. The BDHT we used was sufficiently
large to ensure that every static branch had its own entry thereby eliminating any
possibility of collisions. The pattern length was set to 3, the threshold value was set to
1, and the local history register length was varied from 8-signs to 64-signs in
increments of 8. Our results show that better prediction accuracy is achieved by the
operand sign difference algorithm rather than the operand value difference algorithm
and that beyond a local history register length of 24-signs there is only marginal
improvement in prediction accuracy. The reason that the operand sign difference
algorithm outperforms the operand value difference algorithm is due to the increased

amount of correlation information used by the sign difference algorithm. The
frequency of information used by the operand value difference algorithm is low and
therefore correlation is low, whereas the frequency of information used by the
operand sign difference algorithm is high and therefore correlation is high.

60%
65%
70%
75%
80%
85%
90%
95%

LH
(8)

LH
(16

)

LH
(24

)

LH
(32

)

LH
(40

)

LH
(48

)

LH
(56

)

LH
(64

)

Local history

Pr
ed

ic
tio

n
ac

cu
ra

cy

All-Sign
Unbiased-Sign
All-Value
Unbiased-Value

Figure 4. Average difference prediction accuracy with increasing local history register length

of the sign difference and operand difference algorithms

In Figure 5 we answer the third question: Which pattern length would achieve the best
prediction accuracy? We used a complete PPM predictor with the operand sign
difference algorithm, a local history register length of 24-signs and the threshold
value was set to 1. Our results show that initially prediction accuracy improves with
increasing pattern length and then decreases and these results confirm that our
original pattern length of 3 achieves the best prediction accuracy.
 In Figure 6 we answer the fourth question: What is the most suitable
threshold value? We used the same parameters as Figure 5, but the pattern length was
now set to 3 and the threshold value varied. Our results show that prediction accuracy
improves with an increasing threshold value, but there is marginal, if any, benefit of
increasing the threshold value beyond 7.

In Figure 7 we answer the final question: What would be the optimal number
of entries in the local BDHT? We used the same parameters as Figure 6, and the
number of entries in the local BDHT was varied from 64 entries to 256 entries in
increments of 64. We also include an unlimited local BDHT. Our results show that
the impact of the so called 3Cs (capacity, collisions and cold-start) to be minimal with
a 256 entry local BDHT and that there is minimal prediction accuracy gain by
increasing the number of entries beyond 256 entries where the increased number of
cold-start mispredictions may impact on prediction accuracy.

65%

70%

75%

80%

85%

90%

1 2 3 4 5 6 7 8

Pattern length

Pr
ed

ic
tio

n
ac

cu
ra

cy

All

Unbiased

Figure 5. Average difference prediction accuracy with increasing pattern length

65%

75%

85%

95%

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8

Threshold

Pr
ed

ic
tio

n
ac

cu
ra

cy

All
Unbiased

Figure 6. Average difference prediction accuracy with increasing threshold value

60%
65%
70%
75%
80%
85%
90%
95%

100%

64 12
8

19
2

25
6

un
lim

ite
d

Local history entries

Pr
ed

ic
tio

n
ac

cu
ra

cy

All(T=1)
Unbiased(T=1)
All(T=7)
Unbiased(T=7)

Figure 7. Average difference prediction accuracy with an increase in the number of local

BDHT entries

We investigated the branch prediction accuracies of the individual SPEC2000
benchmarks using our optimal local branch difference predictor. We used the operand
sign difference algorithm, with a local history register length of 24-signs, a pattern
length of 3, and we use a local 256 entry BDHT. In our results we compare two

threshold values, 1 and 7. When the threshold value is 1, we achieve an average
branch prediction accuracy of 90.55% and the unbiased branches have an average
branch prediction accuracy of 71.76%. When the threshold value is increased to 7, we
achieve an average branch prediction accuracy of 96.43% and the unbiased branches
have a prediction accuracy of 76.69%. These results show the significance of the
threshold value on prediction accuracy and the impact of unbiased branches.
Consequently, unbiased branches in this local context remain difficult-to-predict.

4.2. Combined Global and Local Branch Difference Prediction

We consider the high number of unbiased branches and their impact on prediction
accuracy to be due to their high degree of shuffling. To alleviate the problem of
shuffled branch behaviour of unbiased branches we have developed a combined
global and local branch difference predictor which would convert an unbiased branch
in a local context into a biased branch in a global context, and therefore a difficult-to-
predict branch in a local context would be an easy-to-predict branch in a global
context.

In our global and local branch difference predictor, each global history
pattern is used to point to its own local BDHT as described in section 3.1.2 and shown
in Figure 2. Consequently, we restrict the global history register length to a maximum
of 4-signs. The parameters of each of the local BDHTs were the same as those which
achieved the results shown in Figure 7, except we used a 256 entry BDHT.

60%
65%
70%
75%
80%
85%
90%
95%

100%

0 1 2 3 4

Global history length

Pr
ed

ic
tio

n
ac

cu
ra

cy

All(T=1)

Unbiased(T=1)

All(T=7)

Unbiased(T=7)

Figure 8. Combined global and local difference prediction accuracy

In Figure 8 the global history register length of 0 represents the optimal local branch
difference predictor whose results are provided in Figure 7, with a 256 entry BDHT.
With the combined global and local difference predictor, as the global history register
length is increased there is a marginal improvement in prediction accuracy. With a
global history register length of 4-signs and a threshold value of 1, the combined
global and local branch difference predictor achieves an average prediction accuracy
of 90.47%, but the unbiased branches only achieve an average prediction accuracy of
68.81% showing a marginal improvement over the local branch difference predictor.
When the threshold value is increased to 7, the average prediction accuracy improves
to 97.44% and the average prediction accuracy of unbiased branches is still significant
at 81.25%. Even though there is some improvement in prediction accuracy, these

results show that the impact of unbiased branches still remains significant and
therefore implies that alternative approaches are required.

4.3. Branch Difference Prediction by Combining Multiple Partial Matches

Our first alternative approach was to develop a branch difference predictor using five
Markov predictors of orders ranging between 1 and 5 (as described in section 3.1.3
and shown in Figure 3). Again, we use a 256 entry local BDHT, a local history
register length of 24-signs; we compare the prediction accuracy of two voting
algorithms, a simple voting algorithm and a confidence voting algorithm. Our results
show that the average prediction accuracy of the confidence voting algorithm is
marginally better than the simple voting algorithm, as shown in Figure 9.

60%
65%
70%
75%
80%
85%
90%
95%

100%

bz
ip

gz
ip mcf

pa
rse

r
tw

olf

Ave
rag

e

Benchmark

Pr
ed

ic
tio

n
ac

cu
ra

cy

All-Simple-Voting

All-Conf-Voting

Unbiased-Simple-
Voting
Unbiased-Conf-Voting

Figure 9. Difference prediction accuracies by combining multiple partial matches through

simple voting and confidence-based voting

4.4. Neural-based Branch Difference Global and Local Prediction

In our second alternative approach we developed a family of neural-based branch
difference predictors. Our neural predictors are fast single-layer perceptron predictors
similar to those developed by Jiménez [9]. For a fair comparison with our 256 entries
local BDHT we use a perceptron table with 256 entries. Our single-layer perceptron
predictors use global history information only or local history information only or a
combination of global and local history information.

To determine our optimal single-layer perceptron predictor, we vary the
input history register lengths. Not surprisingly, the combination of global and local
history information outperforms the other two predictors. We found that the best
average prediction accuracy of 92.58% was achieved with a 40-global history signs
combination with 28-local history signs. However, the unbiased branches still have a
significant impact with an average prediction accuracy of 73.46%.

Finally, we considered the impact of unbiased branches on a piecewise linear
predictor based on [11]. We dynamically changed the global history input from 18- to

48-bits combined with local history input from 1- to 16-bits. We achieved an average
prediction accuracy of 94.2% on all branches but the impact of unbiased branches still
remained significant at 77.3%.

4.5. Comparing all of the optimal predictors

In Figure 10, we bring together the impact that unbiased branches have on all of the
optimal predictors we have developed (local-PPM, combined-PPM and multiple
Markov combined- perceptron and the piecewise linear branch predictor). Our results
show that unbiased branches have a severe impact on all branch predictors and in all
cases unbiased branches only have an average branch prediction accuracy of between
71.54% (local-PPM) and 77.3% (piecewise linear branch predictor).

60%
65%
70%
75%
80%
85%

bz
ip

gz
ip mcf

pa
rse

r
tw

olf

Ave
rag

e

Benchmark

Pr
ed

ic
tio

n
ac

cu
ra

cy

Local PPM
Global-Local PPM
Multiple Markov
Perceptron
Piecewise

Figure 10. Branch prediction accuracy on unbiased branches

5. Conclusions

In this study we have validated our previous findings in [1, 8] that current state-of-
the-art branch predictors correlate either insufficient information or wrong
information in the prediction of unbiased branches. This led us to consider alternative
approaches: the branch difference predictors using PPM and multiple Markov
predictors and neural-based perceptron predictors. Our results show that unbiased
branches still limit prediction accuracy even with these alternative approaches. The
most effective branch predictor was the piecewise linear branch predictor, but even
this predictor only achieved a prediction accuracy of 77.3% on the unbiased branches.
 However, we have shown that the sign difference algorithm achieves better
prediction accuracy than the operand difference algorithm. We also show that
combined global and local information achieves better prediction accuracy than
global information alone or local information alone.
 In our opinion, the most optimal local branch difference predictor uses the
operand sign difference algorithm, with a local history register length of 24, a pattern
length of 3, a threshold value of 7 and a local BDHT with 256 entries. This predictor

achieves an average prediction accuracy of 96.43% on all branches but on the
unbiased branches only achieve a prediction accuracy of 79.69%.

Also in our opinion, the impact of unbiased branches significantly restricts
prediction accuracy. This means that accurate branch prediction of unbiased branches
remains an open problem and such branches will continue to limit the ceiling of
dynamic branch prediction. Perhaps an alternative mechanism might be to hand-shake
scheduler support with dynamic branch prediction. The idea of the scheduler would
be to remove as many branch instructions from the static code as possible and leave
the remaining branches to be dynamically predicted. Yet another alternative could be
to pursue the concepts of micro-threading [15] where small fragments of code are
executed concurrently and the branch problem is no longer a major concern.

References

[1] Vintan L., Gellert A., Florea A., Oancea M., Egan C., Understanding Prediction Limits
through Unbiased Branches, Lecture Notes in Computer Science, vol. 4186-0480, Springer-
Verlag, ISSN 0302-9743, Berlin Heidelberg, (2006), pp. 480-487.

[2] SPEC2000, The SPEC benchmark programs, http://www.spec.org.
[3] Smith Z., Using Data Values to Aid Branch-Prediction, MSc Thesis, Wisconsin-Madison,

USA, (1998), pp. 1-103.
[4] Heil T.H., Smith Z., Smith J.E., Improving Branch Predictors by Correlating on Data

Values, The 32nd International Symposium on Microarchitecture, (1999), pp. 28-37.
[5] González J., González A., Control-Flow Speculation through Value Prediction, IEEE

Transactions on Computers, Vol. 50, No. 12, (2001), pp. 1362-1376.
[6] Vintan L., Sbera M., Mihu I.Z., Florea A., An Alternative to Branch Prediction: Pre-

Computed Branches, ACM SIGARCH Computer Architecture News, Vol.31, Issue 3, ISSN:
0163-5964, ACM Press, NY, USA, (2003), pp. 20-29.

[7] Gao H., Zhou H., PMPM: Prediction by Combining Multiple Partial Matches, The 2nd
Journal of Instruction-Level Parallelism Championship Branch Prediction Competition
(CBP-2), Orlando, Florida, USA, (2006), pp. 19-24.

[8] Gellert A., Prediction Methods Integrated into Advanced Architectures, Technical Report,
Computer Science Department, "Lucian Blaga" University of Sibiu, (2006), pp. 37-70.

[9] Jiménez D., Lin C., Dynamic Branch Prediction with Perceptrons, In Proceedings of the
Seventh International Symposium on High Performance Computer Architecture (HPCA-7),
(2001), pp. 197-206.

[10] Jiménez D., Lin C., Neural Methods for Dynamic Branch Prediction, ACM Transactions
on Computer Systems, Vol. 20, No. 4, New York, USA, (2002), pp. 369-397.

[11] Jiménez D., Idealized Piecewise Linear Branch Prediction, Journal of Instruction-Level
Parallelism, Vol. 7, (2005), pp. 1-11.

[12] Gellert A., Integration of some advanced prediction methods into speculative computing
systems, Technical Report, Computer Science Department, "Lucian Blaga" University of
Sibiu, (2007), pp. 1-40.

[13] Sazeides Y., Smith J. E., The Predictability of Data Values, Proceedings of the 30th Annual
International Symposium on Microarchitecture, (1997), pp. 248-258.

[14] Simplescalar, The SimpleSim Tool Set, ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar.
[15] Bousias K., Hasasneh N. and Jesshope C. Instruction Level Parallelism through

Microthreading—A Scalable Approach to Chip Multiprocessors, The Computer Journal,
(2006), vol 49 no 2, pp. 211-232.

