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Abstract

This work extends an earlier manual design spaptration of our developed Selective Load Valuedittion based
superscalar architecture to the L2 unified cachiéerAhat we perform an automatic design spacecgapbn using a
special developed software tool by varying sevarehitectural parameters. Our goal is to find opticonfigurations
in terms of CPI (Cycles per Instruction) and eneogynsumption. By varying 19 architectural parangters we
proposed, the design space is over 2.5 millionbiltibns configurations which obviously means ttoatly heuristic

search can be considered. Therefore, we propotgeatif methods of automatic design space explordtésed on our
developed FADSE tool which allow us to evaluatey@800 configurations of the above mentioned hugggh space!
The experimental results show that our automatisigthe space exploration (DSE) provides significarigtter

configurations than our previous manual DSE apgrpagnsidering the proposed multi-objective appinoac
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1. Introduction

This paper presents an automatic design space rakplo of an architecture containing a Selectivead-dvalue
Prediction scheme suitable for energy-aware suplensprocessors. A load value predictor is a hardvaachitectural
enhancement which speculates over the results aif lostructions to speed-up the execution of theseguent
instructions. Lipasti first proposed the Load VaReediction (LVP) concept and, particularly, he eleped a non-
selective LVP in 1996 but we haven’t used his LMRicture due to its huge complexity. Our proposethitectural
enhancement (SLVP) differs from a classic valuaioter due to an improved selection scheme thatllactivating
the predictor only when a miss occurs in the fiesel of cache. We use a simple direct-mapped tabieh requires
less additional hardware enabling reduced energgwaption than traditional approaches (Lipasti'stfproposal).
We first used our SLVP in [9] where we have analytee efficiency of selectively anticipating thesuéts of
long-latency instructions within superscalar anchi8taneous Multithreaded (SMT) architectures. ealdrly we have

focused on Multiply, Division and critical Loadsiftvmiss in L1 data cache). We integrated intoNk&IM simulator



[22] a Dynamic Instruction Reuse scheme for the/Blinl instructions and a Last Value Predictor foe ttritical Load
instructions. Our improved superscalar architecaaiieved an average Instruction Per Cycle (IP@gdpp of 3.5%
on the integer SPEC 2000 benchmarks, of 23.6% erfltlating-point benchmarks, and an improvemengnergy-
delay product of 6.2% and 34.5%, respectively. &waluations have also shown higher IPC and lowative energy
consumption (energy-delay product) on all the estald SMT configurations (1, 2, 3 and 6 threads).

Since our previous results show that most of theé $Beedup was generated by the Load Value Predigtor
further focalized on this speculative technigure[10] we performed a manual design space exptorakgarding the
size of the L1 data cache in order to find the ropti configuration, which keeps high performancdoat energy
consumption. We have shown that the performancebgpseducing the L1 cache capacity can be coveredur
Selective Load Value Prediction (SLVP) techniquehe Texperimental results, performed on the SPEC 2000
benchmarks, have expressed that reducing the laladahe space by quartering its size and using Sird@uces an
improvement of the IPC and energy consumption inhbihe superscalar and SMT architectures against th
corresponding baseline architectures.

In this work we extend the manual design spaceoeapbn of a SLVP-based superscalar architectutaed.2
unified cache. Our goal is to find optimal configtions in terms of CPl (Cycles per Instruction) agwkergy
consumption. After these manual design space exdor performed by varying only 2 parameters weridt to
increase the number of the varied parameters t8y9arying 19 architectural parameters, as we gsed, the design
space is over 2.5 millions of billions configuratgwhich obviously means that only heuristic seaanibe considered.
Therefore, we propose different methods of autamddisign space exploration based on our develop&SE tool
which allow us to evaluate around 2500 configuraiof the above mentioned huge design space, wfilildinding
good solutions! We implemented a domain ontologgstgting of some micro-architectural restrictionsl eexpert
knowledge expressed through fuzzy rules, in ordeaccelerate the design space exploration. By paifig a multi-
objective automatic design space exploration of dhme architecture (using our developed FADSE [8p)| but
varying 19 architectural parameters, the obtainedfigurations are significantly better than the oy obtained
ones.

The paper is organized as follows. Section 2 resithe state-of-the art of value prediction techagand some
basic concepts about design space explorationioBegtintroduces the target architecture and prsstme simulation
methodology. Also, there is performed a short presg®n of the used metrics. Sections 4 and 5 desthe manual
and automatic design space exploration, respegtiteiether with experimental results obtained lom Alpha AXP
21264 architecture. Finally, Section 6 summarizes relevant contributions of this work and presestusie further

work directions.



2. Related Work

Lipasti et al. [16] originally introduced the Loadalue Prediction as a new data-speculative miccbitactural
technique exploiting the concept of value locadityd the dynamic correlation between load instractiddress and its
actual value. An important difference between alug prediction approach and Lipasti's is that eledively predict
only the Load instructions that generate a midslicache. Thus, we attenuate the mispredictions aus reduce the
hardware cost of the speculative micro-architectitereover, since less hardware is required, tieesdso less power
consumption.

Other value predictors like the stride-, contextd gerceptron-based, have been proposed in ouereadrk
[26] for register centric value prediction. The S2Wvas already used in our previous papers [9, &6]aher load
value predictors have been proposed in [4, 19Febght architectural support techniques for valtedjztion or energy
efficient approaches that speculate over the esidilload instructions in order to speed-up thecatien are presented
in [21, 11]. In [21] the authors selectively re-enMte only the speculatively-retired instructionattdepended on the
mispredicted value, so called ForwardSlice, perfogma speed-up execution with an additional haréwamdget
(ReSlice buffer). Somewhat similar, in [11] thelaart proposes a new load latency tolerant designishaoth energy
efficient, and applicable to both in-order and ofibrder cores, based on slice re-execution asltamative use of
multi-threading support, efficient schemes for ségi and memory state management, using a chaioedmuiffer for
efficient store-to-load forwarding, and using pmmimechanisms to reduce re-execution overheadsmitir idea of
load latency tolerance is to virtually scale th#iaal execution structures (issue queue, physiegister file). Load
latency tolerance designs remove from these windmsources all dependent instructions of loads wiids in caches
in order to allow younger instructions to enter gipeline and execute. When a miss returns, thteuictions which
depend on it are re-injected into the pipeline-agquiring issue queue entries and physical registand re-execute.

Further in this section we present some of the kestvn design space exploration tools. M3Explog&] [is a
DSE framework that includes many design space exjim algorithms. M3Explorer can use responseaserinodels
to accelerate the design space exploration. And@&# tool is in a form of a website: archexploreg.f/]. The users
can upload their component on the website wheis ihtegrated into a computer system simulator. @hsign is
compared against other designs introduced by atbers. The users do not have any control on tharittdgh being
used. NASA [14] is also a similar tool. It allowset user to easily integrate his/hers DSE algorigmd offers the
possibility to connect to any simulator (featuréfer®d also by FADSE). Magellan [15] is a DSE tadlich is bounded

to a certain simulator (SMTSIM). Magellan can periaonly single objective DSEs.



In [12] we used our developed FADSE tool to expltre vast design space of the Grid Alu Process&P()G
and its post-link optimizer called GAPtimize, batbveloped at Augsburg University. It has shown BEDSE is able
to thoroughly explore the design space for both GAB GAPtimize and it can find an approximatiorttef Pareto [2,
3] frontier consisting of near-optimal individuais moderate time. For the GAP, FADSE can find, doethe
approximation of the complexity, efficient configtions.

To our knowledge FADSE is the single DSE tool thifdws the user to introduce domain knowledge thtou
fuzzy rules, written in a human-readable form, rdes to accelerate the design space exploratiomiakiaet al. [18]
use neural networks to accelerate the DSE prodéss.authors predict through neural networks if mgividual is

worth simulating or not, but still the knowledgeasf architect is not used.

3. Simulation Methodology

All the experimental results presented further weléained using SPEC 2000 benchmarks on 500 mitligmamic
instructions, skipping the first 300 million insttions. We evaluated six floating-point benchmafdsplu, equake,
galgel, lucas, mesa, mgrid) and six integer benchmarks: computation intenddzm, gcc, gzip) and memory intensive
(mcf, twolf, vpr). Our measurements are generated using an 80 n@SCkchnology and 1.2 GHz frequency.

The target architecture is a superscalar Alpha 21P64 processor augmented with a direct mappectBale
Load Value Predictor of 1024 entries, access lgtend cycle and prediction latency of 3 cycles][10has a Register
File of [32 int / 32 fp]*8, a Reorder Buffer (ROBY 128 entries and a Load/Store Queue (LSQ) of itfies. First-
level caches are 64 KB, 2-way associative, withh@yde latency. The second-level unified cache i8IB, 8-way
associative and 6-cycle latency. The main memosyahlatency of 100 cycles.

For the performance metrics we chose CPI (andP@}) because we want to minimize all the objectfeeshe

clarity of the Pareto graphs. For the relative €fuction we used the following formula:

_ CPl e —~CPI
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where CPl .. and CPlj,eq @re cycles per instructions with the baselineiamgtoved architectures, respectively. A

positive value ofCPI ,.«ion Means a performance improvement related to thelibasarchitecture.

The detailed power modeling methodology, used & $hmulator, is presented in [1]. The dynamic power

consumption in CMOS microprocessors is defined as:

P=CIVZ ALk 2)



whereC is the capacitance, generated usiagti [23], V4 is the supply voltage, arfds the clock frequencyy andf
depend on the assumed process technology. Theatydtietor a indicates how often clock ticks lead to switching
activity on average. The power consumption of tredeted units highly depends on the internal capacés of the
circuits. From the capacitance point of view, thare three categories of architectural structusesay structures,
content-associate memories, and complex logic BloTke first two categories are used to model #ehes, branch
predictors, the reorder buffer, the register remgntable, and the register file, while the lastgaty is used to model
functional units.

For the power consumption evaluation we usedatiggessive non-ideal conditional clocking model [5] which
scales linearly the power of active units with thesage and assumes 10% power dissipation in the aunused
units. The instantaneous average power consumffigg,) for a certain benchmark is computed with thedfelhg

relation:

.
{mmm
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whereT is the total simulation time in cycles aRds given in relation (2). The energy consumpti®given by:
E = Pyean [T 4

where B,,.,, is computed with relation (3). The average endrggighted mean) is given by the following formufa i

[W lcycles]:

Eyen =2 5)

whereN is the number of benchmarlkg, is the total or per unit energy computed for bematki andT,; is the total

number of cycles executed within benchmiarkhe energy reduction percentage is given by:

E . —E
— baseE improved D.OO[%] (6)
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where, Epoee @and Ejpproeq are the energy consumptions of the baseline andharoved architectures, respectively.

Thus, a positive value OE, . qion Means an improvement of the relative energy cop§om



4. Manual design space exploration of the unified L2ache

A method to increase the cache performance is dacee the penalty in case of miss using multilevadhes. Our
simulated architecture uses two level exclusiveheac This allows smaller L2 data caches involviags| power
consumption. The evictions are performed basedhem¢ast Recently Used (LRU) algorithm for bothhealtevels.

The first goal of our research consists in perfogra design space exploration regarding the sizéged 1 data
cache and the unified (instruction & data) L2 cairthsuperscalar architectures augmented with SR tIres. Thus,
we will double, halve, quarter and eighth the LZhem and we will halve, quarter and eighth the Liadaache,
considering as reference the architecture presémt8dction 3. We note withUL2_nDL1 a configuration using m*4
MB 8-way associative unified L2 cache (m=2, 1, 1/, 1/8) and n*64 KB 2-way associative L1 datehea(n=1, 1/2,
1/4, 1/8).

Figure 1 presents the relative CPI and energy texue computed based on formulas (1) and (2),aetsgely —
of different configurations with SLVP of 1024 emtsireported to the baseline configuration withdlW/B. It can be
observed that the SLVP helps maintaining a bet®rahd energy consumption when the cache sizesdueed. The
CPI reduction with the help of the SLVP is positiup to using halve of UL2 and eighth of DL1. Stagtiwith

quartering UL2, the CPI reduction is negative; ¢fi@re no performance improvement is achieved.
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Figure 1. Relative CPI and energy reduction reported to UL21 Bithout SLVP as baseline

The energy reduction is lower in the case of rasly¢he L2 cache to 1/8 than in the case of quadeti The
energy consumption has a static and a dynamic coemo1/8UL2 cache implies a higher miss rate thidL2 and
therefore higher dynamic power consumption, duthéohigher number of off-chip accesses. Thus, dfvére static
power consumption of 1/8UL2 is lower than of 1/4Utl# energy consumption is higher due to the higlysamic
power consumption. Therefore, using only the quastehe L2 cache (2 MB) and the eighth of the latadcache (8

KB) is optimal from the energy consumption viewgoin



As a preliminary conclusion, after the manual desigace exploration the best configuration regard@| is
2UL2_DL1 whereas the best configuration in termsoérgy consumption is 1/4UL2_1/8DL1. There ar® aleme
optimal configurations from both CPI and energywpeints: 1/2UL2_1/2DL1 and 1/2UL2_1/4DL1. Theseults
obtained through manual DSE encourage us to expltaeger design space by automatic DSE becaudeesiand the

optimal configurations are different and there @s® other parameters which can be varied.

5. Automatic design space exploration

In the previous section we varied only the cackessthrough our manual design space exploratiosidBehe caches
there are several parameters that can highly infle@ur two objectives: CPI and energy consumpiide.selected 19
important architectural parameters to be variedhdusur automatic design space exploration, withltdwer and upper
limits given in Table 1. By varying these 19 arehtural parameters the design space grows ovet @5?2.5 millions

of billions) configurations which obviously mearmat only heuristic search can be considered. Thexgfve propose
different methods of automatic design space expitorabased on our developed FADSE tool that costailso a

NSGA-II genetic algorithm implementation.

Parameter Lower limit Upper limit
Sets 2 32768
DL1/IL1 cache | Block size (bytes) 8 256
Associativity 1 8
Sets 256 2097152
UL2 cache Block size (bytes) 64 256
Associativity 2 16
SLVP (entries) 16 8192
Decode / Issue / Commit width 2 32
ROB / LSQ / 1Q size (entries) 32 1024
Number of physical register sets (int / fp) 2/2 /88
Int/ fp ALU 2 8
Int / fp MUL/DIV 1 8

Table 1. Parameter limits

To perform design space exploration we have deeelaptool called Framework for Automatic Design &pa

Exploration (FADSE). It includes many state of #reevolutionary algorithms through the includedepisl [8] library.



FADSE can be connected to almost any existing sitoul The parameters are described through an sterXML
interface. FADSE allows parallel evaluation (inaddalgorithms had to be modified to allow this).

FADSE is a client-server application. The numbecl@nts can be dynamically changed. Clients castbpped
or started while the DSE process runs. Since prifayf DSE can take a lot of time (weeks), reliabitf the DSE tool
is a major concern. FADSE is able to cope withrgiklients, failing networks or even power losdttd entire system.
It is able to recover from these situations by cking the problems and resubmitting the simulatimnsther clients. In
case of power loss, it can restart the DSE proogssaking use of the integrated checkpointing meisma. It contains
a database which allows reusing already simulatédiduals. This leads to a reduction of the tiragquired to perform
an exploration process. FADSE includes many methies the user can choose to evaluate the DSE sgometo
compare different algorithms. Some of the impleredntnetrics are: hypervolume, coverage, two seterdiffce
hypervolume [24], etc.

We have chosen for our automatic DSE the NSGA-flegje algorithm NSGA-II is a multi-objective genetic
algorithm developed by Deb et al. [6]. NSGA-Il Hasen chosen as it provided very good results inpravious
experiments. In [2] we showed that NSGA-II, SMP20][and SPEAZ2 [28] obtain results of similar quabut SPEA2
does not have such a good spread of solutions wptmizing the GAP system. In [3] we compared NSGASPEA2,
SMPSO and OMOPSO [24] on the UniMap simulator {8k showed that NSGA-II and SPEA2 obtain betterltesu
in terms of quality, than the other two algorithritstarts from a random population called the pappulation. From
this parent population an offspring population &grated by means of mutation and crossover (deaélhe two
populations (offspring and parent) are merged atingle one and the best individuals (architetttwafigurations)
are selected according to their fitness value. fithess value is computed considering the domimateationship and
a density function. These individuals will form thew parent population and the process is repeated.

NSGA-II is not a distributed algorithm by defadlio accelerate the DSE process we have changedbthréttam
and now the individuals are evaluated in paraliis is possible because the values of the obgxtf an individual
are required only after all the individuals arelaated. So an entire population can be evaluatgaiallel and a single
synchronization point has to be established atethé of a generation. We configured the NSGA-II &athm as
follows:

Stop condition: we will observe the hypervolume progress. If thisreo progress for at leastgenerations we
consider that the algorithm has converged. To medbe progress we will use the following formula:

X
Progress Z(H k ~H=i) (7)
i=1
whereHy is the hypervolume of the current generatipX < k. When this sum is smaller than a specified thriestio

the algorithm is stopped.



Population size:100 — as recommended in [6].

Mutation: bit flip mutation with a mutation probability df nparam [6] (wherenparam is the number of varied

parameters). In our situation the mutation proliigtig set to 0.05 (19 parameters).

Crossover:single point crossover, probability of crossovetrte 0.9 (as specified in [6]).

Selection operator:binary tournament selection (described in [6])

Used metrics:

— Hypervolume: in a maximization problem the hypewne is the volume enclosed between the Pareto front
approximation and the axes. In a minimization peabla point has to be selected (called hypervolume
reference point). The hypervolume reference pansdlected at the coordinates provided by maximum
values of the objectives.

— Other metrics: number of generated individuals, parnsons between the obtained Pareto fronts

approximation.

5.1.Run without prior information

First of all, we start FADSE with an initial randgngenerated population, without prior informatidie search for the
optimal SLVP-based superscalar configurations dmsig the same two objectives, CPl and energyuwapson, as
in the previous manual design space exploration.véfg the parameters presented in Table 1 withhtipee to find
better configurations than our manually obtainegtimal” configurations.To avoid extremes which can generate
unfeasible configurations, we used the followingstoaints:
UL2 >DL1 +IL1
UL2_bsize> DL1_bsize
UL2_bsize> IL1_bsize
WhereUL2 bsize, DL1 bsize andIL1_bsize are the block sizes for the unified L2 cache, htaccache and L1
instruction cache, respectively. Additionally, wienited the cache sizes by using the following hammhstraints
(borders):
DL1: 16 KB -1 MB
IL1: 16 KB -1 MB
UL2: 1 MB - 8 MB
Unfortunately, the constraints used within thei@hitun does not allow FADSE to efficiently expldie borders
and, therefore, the configurations were not bettan those obtained manually (see Figure 2) fraenetiergy point of

view. Consequently, we relaxed the minimum caclpaciies as follows:



DL1: 4 KB -1 MB

IL1: 8 KB -1 MB

UL2: 256 KB - 8 MB
As Figure 2 shows, with relaxed borders FADSE piesisignificantly better configurations than ousyious manual
design space exploration. With these constrairesdiéssign space is reduced to 3% of the initial spateaning 7.7
*10'® (77 thousands of billions) configurations. Consiulg both objectives, the better results are infhesl by the
following parameters: less DL1 sets, less IL1 daitfher decode/issue/commit width, higher ROB diegher 1Q size,
higher number of MUL/DIV and higher SLVP size. Bitructures will increase the energy consumptiors tve do
need FADSE to find the relations between diffeqgatameters. We can observe again that SLVP help#tairang a
better CPI and energy consumption when the caeks sire reduced.

Since the exploration with relaxed borders was sap#o the initial constraints, in the next expeeints we used

only the relaxed borders.

5.2.Run with manually obtained “optimal” configurations

The second step in our experiment consists inisgafEADSE with an initial randomly generated popiaia but
containing also our manually obtained “optimal” figarations and their vicinity (with the goal tofl better ones). We
selected from Figure 1 the best configuration inl,CRJL2_DL1, the best configuration in terms of eme
consumption, 1/4UL2_1/8DL1, and other two confidimas which are optimal from both CPI and energswpoints:
1/2UL2_1/2DL1 and 1/2UL2_1/4DL1. We also considetkd vicinities of these four configurations by yiag the
SLVP size, L1 data cache size and L2 unified catbhe one step up and down. Thus, we started FAQfSE avith
randomly generated population but containing also2d selected configurations: the “optimal” mancahfigurations
and their vicinities (some of them are overlapp€&ijure 2 shows the obtained Pareto fronts aftege2terations by the
first three runs (initial run, run with relaxed blers and run with initial good configurations) caargd with the
manually obtained configurations.

In terms of CPI all the runs find much better solug than the manually obtained configurations. fhewith
relaxed borders clearly finds better configuratitimsn the ones obtained through manual exploratimh also better
than the ones found during the initial run (resitvee constraints). The obtained solutions are ithsted evenly along

the Pareto approximated front.
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Figure 2. Pareto fronts comparison

Inserting good configurations into the initial pdgtion provides also good results but it is noeabl explore the
area with very low energies. It obtains better lteasthan the run with relaxed borders in the vigindf energy

1.20E+1Q W [cycles]. Low energy configurations are not found probatdygause the initial configurations were better

(and we have observed this on our analysis of Hret® front approximation evolution over the getiers) than all
the other individuals inserted randomly in the gapon. So all these good individuals survived ultie next
generation and most of the offspring were gener&tau them thus loosing diversity. The mutation igter with a
probability of 0.05 of changing one parameter hamall chance of influencing significantly the poodd offspring,

leading to a reduction of diversity.

5.3.Run with knowledge expressed through fuzzy rules

We are using fuzzy rules to allow the designerdqoress knowledge. The information provided by thiegey rules is
then used during the search process to guide the &)gdrithm. For this purpose we have includedjEhezylLogic
library (http://jfuzzylogic.sourceforge.net) in FAE. A user can define rules in a standard FCL(flC 61131 part
7). In this article we have developed and implemeérhe following rules derived from our experiengecomputer

architecture design:

IF Number_Of_Physical_Register_Setssiall/big THEN Decode/lssue/Commit_Width E8all/big

IF SLVP_size 1Ssmall/big THEN L1_Data Cache IBig/small

We have selected the Mamdani-type fuzzy systemp [diese imply the following steps that need tocheried to

extract information: fuzzification of the input vables, evaluating the rules, aggregating the dst@nd then

11



defuzzification. The fuzzification was done usimgpezoidal functions. For the evaluation thie function was used
for “and” andmax for “or”. For inference the Mamdani implicationshased rfin). The rule aggregation was performed
using the Mamdani aggregatiomax). This system was selected because of its populari

Two different mutation operators were used. Bothttefm are based on the bit flip mutation. To preser
diversity, the information provided by the fuzzylesi is not always taken into consideration. To ibbthis, a
probability of applying the fuzzy information (cadl fuzzy probability) is used. The only differenbetween the
implemented methods is how the probability to agpsyinformation provided by the fuzzy rules is quted.

In the simple implementation this fuzzy probabilgyconstant during the run of the algorithm anid get to be
equal with the probability of mutatioom(tation prob). If the fuzzy rule is not applied the algorithmwitches to the
classical bit flip mutation for the current parasrefThe second implementation uses a Gaussianlghitpao there is a
higher chance to apply the fuzzy rules for thet fij@nerations. As the DSE process runs, the prityatni apply the
fuzzy rules decreases to a value closeadtation_prob. We have selected the parameters of the Gaussiatidn such
that at generation 5 the function is close to Ge Gaussian function is then translated so thatrimémum is close to

mutation_prob. The final form of the function is shown below:

-(xf
f(X) g = (L— mutation_ prob) 2®59° + mutation_ prob @)

where x increases with one for each individual geteel by the algorithm. The result of this functisnfurther
multiplied by 0.8 and by the membership value [@7dbtain a maximum value less than 1.

Figure 3 presents the results obtained with fumfgrimation compared with the previous results.
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Figure 3. Pareto front comparisons between the run withyfuaes and the run with relaxed borders
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We have selected the run with relaxed bordersgdditun without fuzzy”) as the reference run siticbas
found solutions all along the approximated Paretmtf In Figure 3 we compare the run with fuzzyommfiation
(constant probability to apply the fuzzy rules) wthe run without fuzzy. It can be easily obserttegt the run with
fuzzy information obtains very good results. FigBralso shows that the run with fuzzy rules find#tdr results in the

vicinity of energy 1.20E+1QW [cycles] than the run without fuzzy information. We havscacompared the run with

fuzzy rules with the one with initial good configdions and we observed that in fact the later abtaifew individuals

which are slightly better.
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Figure 4. Pareto fronts comparison between the runs withyfuales

Figure 4 performs a comparison between the reebl&ined with fuzzy information but with differemtethods
of calculating the probability to use the infornastiprovided by them. The run with constant proligbfinds better
individuals in the area with low energy. Havingamost 80% probability to apply the rules during fhist generations
might lead to a loss in diversity of the individsi@in the parameters influenced by the rules. Busrhight explain the
poorer results.

Figure 5 gives us two types of information: abchw tonvergence of the algorithms and about theityuaf
results. It can be observed that the algorithmsd tenstop the rapid evolution after 15 generati@ngial run is an

exception). The algorithms were run until generatd due to time constraints.
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Figure 5. Hypervolume comparison

After a comparison of the hypervolume values we canclude that: the initial run with restricted ters
obtained the worse results. Relaxing the bordemsiderably improved the quality of results everutjiothe size of the
design space has become larger by a factor of dr@utfrom 3.8*10° to 7.7*10°%). Having good configurations
inserted in the initial population can lead to vgood results but it starts to perform worse afemeration 14, rising a
bit after generation 19 and then dropping drambyicafter generation 23. Observing the obtainedeRarfront
approximation and its evolution we have concludeat the algorithm tends to focus on a smaller afethe space,
falling into local minima. This can be explained the lack of diversity of the initial configuratisnsince all the
individuals inserted differ on only two paramet&msn a total of 19.

The run with a constant probability of accepting tlesults from the fuzzy rules provided the bestilts. The
run with a Gaussian probability of applying theoimmhation provided by the fuzzy rules had a simiahavior at the
beginning with the run using relaxed borders. Afieneration 12 the results are slightly worse. \Afe @onclude that
imposing a high probability of the rules will redudiversity, especially with a small number of sulén our previous
work more rules were used and the membership fumethad many intervals (associated linguistic t@fif3]. In this
situation the runs with Gaussian probability pr@ddetter results.

It can be observed that using some extra knowl€ihiféal configurations or fuzzy rules) makes thHgaithm
start from a better initial population (see the éiywlume values at generation 1) and, as a coneeguthe algorithm’s
convergence speed is better.

The hypervolume corresponding to the run with astamt probability of applying the fuzzy rules anhgeation
15, is reached by the run with relaxed borders anlgeneration 24. This is a great improvementunexperiments,

running one generation on 96 cores belonging tongel Xeon powered HPC system, with cores runnin@@Hz,
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takes around one day. Running with fuzzy rules aldeved the same results 9 days earlier (36% Jattten without
fuzzy rules. Additionally, after the same amounttiafe (25 generations) the hypervolume reachedhiyrtin with
fuzzy is never reached by the simple run. If mareligative information would have been providedotigh the fuzzy
rules we do expect even bigger improvements. Alsimxperiment takes around 25 days. Running all fibe
experiments took over 4 months of simulation onRCHystem using 96 cores.

All the runs evaluate roughly the same amount dividuals: around 2200 from the 2500 individualstster
evaluation; the rest are reused from the datalde$é (euse degree). This means that the producsprioffy are almost
all of them new/different individuals. This behavis caused by the extremely large design spacepréwious
explorations on different simulators (smaller dasigace — 19 around 60% reuse degree was observed [2, 12].

After analyzing the best results obtained durirggdahtomatic DSE process we extracted the parawvedigzs for
optimal configurations from either high performamedow energy viewpoints. The results are preskméelable 2. As

it can be observed, some parameters like Decodthaitd SLVP size must have high values in ordesbi@in both

high performance and low energy.

Parameter For high performance For low energy
Sets 2048 32
DL1 cache Block size (bytes) 256 64
Associativity 2 2
Sets 1024 32
IL1 cache Block size (bytes) 16 256
Associativity 8 1
Sets 8192 256
UL2 cache Block size (bytes) 256 256
Associativity 4 16
SLVP (entries) 4096-8192 4096-8192
Decode / Issue / Commit width 32/16/32 16-323// 16-32
ROB / LSQ / 1Q size (entries) 1024 /512-1024 / 128256 / 32-64 / 64
Number of physical register sets (int / fp) 8/8 2/2
Int/ fp ALU 8/8 8/2
Int / fp MUL/DIV 8/8 8/8

Table 2. Parameter values for optimal configurations
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6. Conclusions and Further Work

We have observed that the SLVP helps maintainibgteer CPI and energy consumption when the cades si
are reduced. Therefore, the optimal configuratiohsained by both the manual and automatic degignesexploration
of our SLVP-based superscalar architecture, hawverlcache sizes than the baseline architectureutitBLVP.

FADSE is able to find good configurations by evéihg a very small percentage of the total searatspWe
reduced the number of evaluated configurationsriy 8500, representing 3*1% of the huge constrained design
space of 77 thousands of billions configurationbe Texperimental results show that our automatidégdespace
exploration provides significantly better configtioas than our previous manual design space exjjora

Starting FADSE with initial good configurations cancelerate the DSE process. It is recommendedttibat
configurations differ on multiple parameters sot tti@ersity is preserved. In our situation the déguafations differed
only on three parameters thus leading to a loskvefsity and finally it could not explore the emtPareto front.

Using fuzzy rules can considerably accelerate tB& Process (9 days earlier to reach the same riesalir
situation). Also the obtained results are bettantthe ones obtained with no prior information rafite same amount of
time. In this concrete optimization process thestant probability to apply the fuzzy rules leacbtter results. In our
previous work — where the number of rules was higirel had more linguistic terms associated to teenbership
functions — we have obtained better results by radiuhg the probability with a Gaussian function idgr the
generations. With a larger number of rules theviddials are mutated into a more diverse populafi¢rus, forcing the
rules to be applied often does not lead to a lbgéversity in the population.

We plan to repeat these experiments on SLVP-bad&tl &d multi-core architectures. Other further work
possibilities are to access the SLVP only in theeaaf miss in both the L1 and L2 data caches,dexrithe SLVP table
with the memory address instead of the instrucéiddress, to exploit an N-value locality instead ofalue locality as
we are currently exploiting, to evaluate set-asgoe SLVP configurations and yet another one tsigte and
implement an adaptive dynamic run-time thermal rgangtemporarily deactivating the SLVP unit, vokascaling,
frequency scaling, migrating computation, etc.). sl& plan to explore, as the third objective, dresize needed by

the memory architecture.
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