
Appeared in IET Computers & Digital Techniques, Vol. 6, Issue 4, ISSN: 1751-8601, pp. 205-213, 2012

Multi-Objective Optimizations for a Superscalar Architecture with
Selective Value Prediction

Arpad Gellert, Horia Calborean, Lucian Vintan, Adrian Florea

Computer Engineering Department, “Lucian Blaga” University of Sibiu, Emil Cioran Street, No. 4,

550025 Sibiu, Romania
E-mail: {arpad.gellert, horia.calborean, lucian.vintan, adrian.florea}@ulbsibiu.ro

Abstract

This work extends an earlier manual design space exploration of our developed Selective Load Value Prediction based

superscalar architecture to the L2 unified cache. After that we perform an automatic design space exploration using a

special developed software tool by varying several architectural parameters. Our goal is to find optimal configurations

in terms of CPI (Cycles per Instruction) and energy consumption. By varying 19 architectural parameters, as we

proposed, the design space is over 2.5 millions of billions configurations which obviously means that only heuristic

search can be considered. Therefore, we propose different methods of automatic design space exploration based on our

developed FADSE tool which allow us to evaluate only 2500 configurations of the above mentioned huge design space!

The experimental results show that our automatic design space exploration (DSE) provides significantly better

configurations than our previous manual DSE approach, considering the proposed multi-objective approach.

Keywords: Multi-Objective Design Space Exploration, NSGA-II, Simulation, Superscalar, Value Prediction, Cache

1. Introduction

This paper presents an automatic design space exploration of an architecture containing a Selective Load Value

Prediction scheme suitable for energy-aware superscalar processors. A load value predictor is a hardware architectural

enhancement which speculates over the results of load instructions to speed-up the execution of the subsequent

instructions. Lipasti first proposed the Load Value Prediction (LVP) concept and, particularly, he developed a non-

selective LVP in 1996 but we haven’t used his LVP structure due to its huge complexity. Our proposed architectural

enhancement (SLVP) differs from a classic value predictor due to an improved selection scheme that allows activating

the predictor only when a miss occurs in the first level of cache. We use a simple direct-mapped table which requires

less additional hardware enabling reduced energy consumption than traditional approaches (Lipasti’s first proposal).

We first used our SLVP in [9] where we have analyzed the efficiency of selectively anticipating the results of

long-latency instructions within superscalar and Simultaneous Multithreaded (SMT) architectures. Particularly we have

focused on Multiply, Division and critical Loads (with miss in L1 data cache). We integrated into the M-SIM simulator

 2

[22] a Dynamic Instruction Reuse scheme for the Mul/Div instructions and a Last Value Predictor for the critical Load

instructions. Our improved superscalar architecture achieved an average Instruction Per Cycle (IPC) speedup of 3.5%

on the integer SPEC 2000 benchmarks, of 23.6% on the floating-point benchmarks, and an improvement in energy-

delay product of 6.2% and 34.5%, respectively. Our evaluations have also shown higher IPC and lower relative energy

consumption (energy-delay product) on all the evaluated SMT configurations (1, 2, 3 and 6 threads).

Since our previous results show that most of the IPC speedup was generated by the Load Value Predictor we

further focalized on this speculative technique. In [10] we performed a manual design space exploration regarding the

size of the L1 data cache in order to find the optimal configuration, which keeps high performance at low energy

consumption. We have shown that the performance lost by reducing the L1 cache capacity can be covered by our

Selective Load Value Prediction (SLVP) technique. The experimental results, performed on the SPEC 2000

benchmarks, have expressed that reducing the L1 data cache space by quartering its size and using SLVP produces an

improvement of the IPC and energy consumption in both the superscalar and SMT architectures against the

corresponding baseline architectures.

In this work we extend the manual design space exploration of a SLVP-based superscalar architecture to the L2

unified cache. Our goal is to find optimal configurations in terms of CPI (Cycles per Instruction) and energy

consumption. After these manual design space exploration performed by varying only 2 parameters we intend to

increase the number of the varied parameters to 19. By varying 19 architectural parameters, as we proposed, the design

space is over 2.5 millions of billions configurations which obviously means that only heuristic search can be considered.

Therefore, we propose different methods of automatic design space exploration based on our developed FADSE tool

which allow us to evaluate around 2500 configurations of the above mentioned huge design space, while still finding

good solutions! We implemented a domain ontology consisting of some micro-architectural restrictions and expert

knowledge expressed through fuzzy rules, in order to accelerate the design space exploration. By performing a multi-

objective automatic design space exploration of the same architecture (using our developed FADSE tool [3]), but

varying 19 architectural parameters, the obtained configurations are significantly better than the manually obtained

ones.

The paper is organized as follows. Section 2 reviews the state-of-the art of value prediction techniques and some

basic concepts about design space exploration. Section 3 introduces the target architecture and presents the simulation

methodology. Also, there is performed a short presentation of the used metrics. Sections 4 and 5 describe the manual

and automatic design space exploration, respectively, together with experimental results obtained on the Alpha AXP

21264 architecture. Finally, Section 6 summarizes the relevant contributions of this work and presents some further

work directions.

 3

2. Related Work

Lipasti et al. [16] originally introduced the Load Value Prediction as a new data-speculative micro-architectural

technique exploiting the concept of value locality and the dynamic correlation between load instruction address and its

actual value. An important difference between our value prediction approach and Lipasti’s is that we selectively predict

only the Load instructions that generate a miss in L1 cache. Thus, we attenuate the mispredictions cost and reduce the

hardware cost of the speculative micro-architecture. Moreover, since less hardware is required, there is also less power

consumption.

Other value predictors like the stride-, context- and perceptron-based, have been proposed in our earlier work

[26] for register centric value prediction. The SLVP was already used in our previous papers [9, 10] and other load

value predictors have been proposed in [4, 19]. Different architectural support techniques for value prediction or energy

efficient approaches that speculate over the results of load instructions in order to speed-up the execution are presented

in [21, 11]. In [21] the authors selectively re-execute only the speculatively-retired instructions that depended on the

mispredicted value, so called ForwardSlice, performing a speed-up execution with an additional hardware budget

(ReSlice buffer). Somewhat similar, in [11] the author proposes a new load latency tolerant design that is both energy

efficient, and applicable to both in-order and out-of-order cores, based on slice re-execution as an alternative use of

multi-threading support, efficient schemes for register and memory state management, using a chained store buffer for

efficient store-to-load forwarding, and using pruning mechanisms to reduce re-execution overheads. The main idea of

load latency tolerance is to virtually scale the critical execution structures (issue queue, physical register file). Load

latency tolerance designs remove from these window resources all dependent instructions of loads with miss in caches

in order to allow younger instructions to enter the pipeline and execute. When a miss returns, the instructions which

depend on it are re-injected into the pipeline – re-acquiring issue queue entries and physical registers – and re-execute.

Further in this section we present some of the best known design space exploration tools. M3Explorer [25] is a

DSE framework that includes many design space exploration algorithms. M3Explorer can use response surface models

to accelerate the design space exploration. Another DSE tool is in a form of a website: archexplorer.org [7]. The users

can upload their component on the website where it is integrated into a computer system simulator. The design is

compared against other designs introduced by other users. The users do not have any control on the algorithm being

used. NASA [14] is also a similar tool. It allows the user to easily integrate his/hers DSE algorithm and offers the

possibility to connect to any simulator (features offered also by FADSE). Magellan [15] is a DSE tool which is bounded

to a certain simulator (SMTSIM). Magellan can perform only single objective DSEs.

 4

In [12] we used our developed FADSE tool to explore the vast design space of the Grid Alu Processor (GAP)

and its post-link optimizer called GAPtimize, both developed at Augsburg University. It has shown that FADSE is able

to thoroughly explore the design space for both GAP and GAPtimize and it can find an approximation of the Pareto [2,

3] frontier consisting of near-optimal individuals in moderate time. For the GAP, FADSE can find, due to the

approximation of the complexity, efficient configurations.

To our knowledge FADSE is the single DSE tool that allows the user to introduce domain knowledge through

fuzzy rules, written in a human-readable form, in order to accelerate the design space exploration. Mariani et al. [18]

use neural networks to accelerate the DSE process. The authors predict through neural networks if an individual is

worth simulating or not, but still the knowledge of an architect is not used.

3. Simulation Methodology

All the experimental results presented further were obtained using SPEC 2000 benchmarks on 500 million dynamic

instructions, skipping the first 300 million instructions. We evaluated six floating-point benchmarks (applu, equake,

galgel, lucas, mesa, mgrid) and six integer benchmarks: computation intensive (bzip, gcc, gzip) and memory intensive

(mcf, twolf, vpr). Our measurements are generated using an 80 nm CMOS technology and 1.2 GHz frequency.

The target architecture is a superscalar Alpha AXP 21264 processor augmented with a direct mapped Selective

Load Value Predictor of 1024 entries, access latency of 1 cycle and prediction latency of 3 cycles [10]. It has a Register

File of [32 int / 32 fp]*8, a Reorder Buffer (ROB) of 128 entries and a Load/Store Queue (LSQ) of 48 entries. First-

level caches are 64 KB, 2-way associative, with a 1-cycle latency. The second-level unified cache is 4 MB, 8-way

associative and 6-cycle latency. The main memory has a latency of 100 cycles.

For the performance metrics we chose CPI (and not IPC) because we want to minimize all the objectives for the

clarity of the Pareto graphs. For the relative CPI reduction we used the following formula:

[%]100⋅
−

=
base

improvedbase
reduction CPI

CPICPI
CPI (1)

where baseCPI and improvedCPI are cycles per instructions with the baseline and improved architectures, respectively. A

positive value of reductionCPI means a performance improvement related to the baseline architecture.

The detailed power modeling methodology, used in the simulator, is presented in [1]. The dynamic power

consumption in CMOS microprocessors is defined as:

faVCP dd ⋅⋅⋅= 2 (2)

 5

where C is the capacitance, generated using Cacti [23], Vdd is the supply voltage, and f is the clock frequency. Vdd and f

depend on the assumed process technology. The activity factor a indicates how often clock ticks lead to switching

activity on average. The power consumption of the modeled units highly depends on the internal capacitances of the

circuits. From the capacitance point of view, there are three categories of architectural structures: array structures,

content-associate memories, and complex logic blocks. The first two categories are used to model the caches, branch

predictors, the reorder buffer, the register renaming table, and the register file, while the last category is used to model

functional units.

For the power consumption evaluation we used the aggressive non-ideal conditional clocking model [5] which

scales linearly the power of active units with their usage and assumes 10% power dissipation in the case of unused

units. The instantaneous average power consumption (PMean) for a certain benchmark is computed with the following

relation:

T

dttP

P

T

Mean

∫ ⋅

= 0

)(

 (3)

where T is the total simulation time in cycles and P is given in relation (2). The energy consumption is given by:

TPE Mean ⋅= (4)

where MeanP is computed with relation (3). The average energy (weighted mean) is given by the following formula in

[cyclesW ⋅]:

∑

∑

=

=

⋅
=

N

i
i

N

i
ii

Mean

T

TE

E

1

1 (5)

where N is the number of benchmarks, Ei is the total or per unit energy computed for benchmark i and Ti is the total

number of cycles executed within benchmark i. The energy reduction percentage is given by:

[%]100⋅
−

=
base

improvedbase
reduction E

EE
E (6)

where, baseE and improvedE are the energy consumptions of the baseline and our improved architectures, respectively.

Thus, a positive value of reductionE means an improvement of the relative energy consumption.

 6

4. Manual design space exploration of the unified L2 cache

A method to increase the cache performance is to reduce the penalty in case of miss using multilevel caches. Our

simulated architecture uses two level exclusive caches. This allows smaller L2 data caches involving less power

consumption. The evictions are performed based on the Least Recently Used (LRU) algorithm for both cache levels.

The first goal of our research consists in performing a design space exploration regarding the sizes of the L1 data

cache and the unified (instruction & data) L2 cache in superscalar architectures augmented with SLVP structures. Thus,

we will double, halve, quarter and eighth the L2 cache and we will halve, quarter and eighth the L1 data cache,

considering as reference the architecture presented in Section 3. We note with mUL2_nDL1 a configuration using m*4

MB 8-way associative unified L2 cache (m=2, 1, 1/2, 1/4, 1/8) and n*64 KB 2-way associative L1 data cache (n=1, 1/2,

1/4, 1/8).

Figure 1 presents the relative CPI and energy reduction – computed based on formulas (1) and (2), respectively –

of different configurations with SLVP of 1024 entries reported to the baseline configuration without SLVP. It can be

observed that the SLVP helps maintaining a better CPI and energy consumption when the cache sizes are reduced. The

CPI reduction with the help of the SLVP is positive up to using halve of UL2 and eighth of DL1. Starting with

quartering UL2, the CPI reduction is negative; therefore no performance improvement is achieved.

Figure 1. Relative CPI and energy reduction reported to UL2_DL1 without SLVP as baseline

The energy reduction is lower in the case of reducing the L2 cache to 1/8 than in the case of quartering it. The

energy consumption has a static and a dynamic component. 1/8UL2 cache implies a higher miss rate than 1/4UL2 and

therefore higher dynamic power consumption, due to the higher number of off-chip accesses. Thus, even if the static

power consumption of 1/8UL2 is lower than of 1/4UL2 the energy consumption is higher due to the higher dynamic

power consumption. Therefore, using only the quarter of the L2 cache (2 MB) and the eighth of the L1 data cache (8

KB) is optimal from the energy consumption viewpoint.

 7

As a preliminary conclusion, after the manual design space exploration the best configuration regarding CPI is

2UL2_DL1 whereas the best configuration in terms of energy consumption is 1/4UL2_1/8DL1. There are also some

optimal configurations from both CPI and energy viewpoints: 1/2UL2_1/2DL1 and 1/2UL2_1/4DL1. These results

obtained through manual DSE encourage us to explore a larger design space by automatic DSE because the best and the

optimal configurations are different and there are also other parameters which can be varied.

5. Automatic design space exploration

In the previous section we varied only the cache sizes through our manual design space exploration. Beside the caches

there are several parameters that can highly influence our two objectives: CPI and energy consumption. We selected 19

important architectural parameters to be varied during our automatic design space exploration, with the lower and upper

limits given in Table 1. By varying these 19 architectural parameters the design space grows over 2.5*1015 (2.5 millions

of billions) configurations which obviously means that only heuristic search can be considered. Therefore, we propose

different methods of automatic design space exploration based on our developed FADSE tool that contains also a

NSGA-II genetic algorithm implementation.

Parameter Lower limit Upper limit

Sets 2 32768

Block size (bytes) 8 256 DL1 / IL1 cache

Associativity 1 8

Sets 256 2097152

Block size (bytes) 64 256 UL2 cache

Associativity 2 16

SLVP (entries) 16 8192

Decode / Issue / Commit width 2 32

ROB / LSQ / IQ size (entries) 32 1024

Number of physical register sets (int / fp) 2/2 8/8

Int / fp ALU 2 8

Int / fp MUL/DIV 1 8

Table 1. Parameter limits

To perform design space exploration we have developed a tool called Framework for Automatic Design Space

Exploration (FADSE). It includes many state of the art evolutionary algorithms through the included jMetal [8] library.

 8

FADSE can be connected to almost any existing simulator. The parameters are described through an extensible XML

interface. FADSE allows parallel evaluation (included algorithms had to be modified to allow this).

FADSE is a client-server application. The number of clients can be dynamically changed. Clients can be stopped

or started while the DSE process runs. Since performing DSE can take a lot of time (weeks), reliability of the DSE tool

is a major concern. FADSE is able to cope with failing clients, failing networks or even power loss of the entire system.

It is able to recover from these situations by detecting the problems and resubmitting the simulations to other clients. In

case of power loss, it can restart the DSE process by making use of the integrated checkpointing mechanism. It contains

a database which allows reusing already simulated individuals. This leads to a reduction of the time required to perform

an exploration process. FADSE includes many metrics that the user can choose to evaluate the DSE process or to

compare different algorithms. Some of the implemented metrics are: hypervolume, coverage, two set difference

hypervolume [24], etc.

We have chosen for our automatic DSE the NSGA-II genetic algorithm. NSGA-II is a multi-objective genetic

algorithm developed by Deb et al. [6]. NSGA-II has been chosen as it provided very good results in our previous

experiments. In [2] we showed that NSGA-II, SMPSO [20] and SPEA2 [28] obtain results of similar quality but SPEA2

does not have such a good spread of solutions when optimizing the GAP system. In [3] we compared NSGA-II, SPEA2,

SMPSO and OMOPSO [24] on the UniMap simulator [3]. We showed that NSGA-II and SPEA2 obtain better results,

in terms of quality, than the other two algorithms. It starts from a random population called the parent population. From

this parent population an offspring population is generated by means of mutation and crossover (see below). The two

populations (offspring and parent) are merged into a single one and the best individuals (architectural configurations)

are selected according to their fitness value. The fitness value is computed considering the domination relationship and

a density function. These individuals will form the new parent population and the process is repeated.

NSGA-II is not a distributed algorithm by default. To accelerate the DSE process we have changed the algorithm

and now the individuals are evaluated in parallel. This is possible because the values of the objectives of an individual

are required only after all the individuals are evaluated. So an entire population can be evaluated in parallel and a single

synchronization point has to be established at the end of a generation. We configured the NSGA-II algorithm as

follows:

Stop condition: we will observe the hypervolume progress. If there is no progress for at least X generations we

consider that the algorithm has converged. To measure the progress we will use the following formula:

∑
=

−−=
X

i
ikk HH

1

)(Progress (7)

where Hk is the hypervolume of the current generation k, X ≤ k. When this sum is smaller than a specified threshold θ

the algorithm is stopped.

 9

Population size: 100 – as recommended in [6].

Mutation: bit flip mutation with a mutation probability of nparam1 [6] (where nparam is the number of varied

parameters). In our situation the mutation probability is set to 0.05 (19 parameters).

Crossover: single point crossover, probability of crossover set to 0.9 (as specified in [6]).

Selection operator: binary tournament selection (described in [6])

Used metrics:

− Hypervolume: in a maximization problem the hypervolume is the volume enclosed between the Pareto front

approximation and the axes. In a minimization problem a point has to be selected (called hypervolume

reference point). The hypervolume reference point is selected at the coordinates provided by maximum

values of the objectives.

− Other metrics: number of generated individuals, comparisons between the obtained Pareto fronts

approximation.

5.1. Run without prior information

First of all, we start FADSE with an initial randomly generated population, without prior information. We search for the

optimal SLVP-based superscalar configurations considering the same two objectives, CPI and energy consumption, as

in the previous manual design space exploration. We vary the parameters presented in Table 1 with the hope to find

better configurations than our manually obtained “optimal” configurations. To avoid extremes which can generate

unfeasible configurations, we used the following constraints:

UL2 > DL1 + IL1

UL2_bsize ≥ DL1_bsize

UL2_bsize ≥ IL1_bsize

Where UL2_bsize, DL1_bsize and IL1_bsize are the block sizes for the unified L2 cache, L1 data cache and L1

instruction cache, respectively. Additionally, we limited the cache sizes by using the following hard constraints

(borders):

DL1: 16 KB - 1 MB

IL1: 16 KB - 1 MB

UL2: 1 MB - 8 MB

Unfortunately, the constraints used within the initial run does not allow FADSE to efficiently explore the borders

and, therefore, the configurations were not better than those obtained manually (see Figure 2) from the energy point of

view. Consequently, we relaxed the minimum cache capacities as follows:

 10

DL1: 4 KB - 1 MB

IL1: 8 KB - 1 MB

UL2: 256 KB - 8 MB

As Figure 2 shows, with relaxed borders FADSE provides significantly better configurations than our previous manual

design space exploration. With these constraints the design space is reduced to 3% of the initial space, meaning 7.7

*1013 (77 thousands of billions) configurations. Considering both objectives, the better results are influenced by the

following parameters: less DL1 sets, less IL1 sets, higher decode/issue/commit width, higher ROB size, higher IQ size,

higher number of MUL/DIV and higher SLVP size. Big structures will increase the energy consumption thus we do

need FADSE to find the relations between different parameters. We can observe again that SLVP helps maintaining a

better CPI and energy consumption when the cache sizes are reduced.

Since the exploration with relaxed borders was superior to the initial constraints, in the next experiments we used

only the relaxed borders.

5.2. Run with manually obtained “optimal” configurations

The second step in our experiment consists in starting FADSE with an initial randomly generated population but

containing also our manually obtained “optimal” configurations and their vicinity (with the goal to find better ones). We

selected from Figure 1 the best configuration in CPI, 2UL2_DL1, the best configuration in terms of energy

consumption, 1/4UL2_1/8DL1, and other two configurations which are optimal from both CPI and energy viewpoints:

1/2UL2_1/2DL1 and 1/2UL2_1/4DL1. We also considered the vicinities of these four configurations by varying the

SLVP size, L1 data cache size and L2 unified cache size one step up and down. Thus, we started FADSE again with

randomly generated population but containing also our 24 selected configurations: the “optimal” manual configurations

and their vicinities (some of them are overlapped). Figure 2 shows the obtained Pareto fronts after 25 generations by the

first three runs (initial run, run with relaxed borders and run with initial good configurations) compared with the

manually obtained configurations.

In terms of CPI all the runs find much better solutions than the manually obtained configurations. The run with

relaxed borders clearly finds better configurations than the ones obtained through manual exploration and also better

than the ones found during the initial run (restrictive constraints). The obtained solutions are distributed evenly along

the Pareto approximated front.

 11

Figure 2. Pareto fronts comparison

Inserting good configurations into the initial population provides also good results but it is not able to explore the

area with very low energies. It obtains better results than the run with relaxed borders in the vicinity of energy

1.20E+10 [cyclesW ⋅]. Low energy configurations are not found probably because the initial configurations were better

(and we have observed this on our analysis of the Pareto front approximation evolution over the generations) than all

the other individuals inserted randomly in the population. So all these good individuals survived until the next

generation and most of the offspring were generated from them thus loosing diversity. The mutation operator with a

probability of 0.05 of changing one parameter has a small chance of influencing significantly the produced offspring,

leading to a reduction of diversity.

5.3. Run with knowledge expressed through fuzzy rules

We are using fuzzy rules to allow the designer to express knowledge. The information provided by these fuzzy rules is

then used during the search process to guide the DSE algorithm. For this purpose we have included the jFuzzyLogic

library (http://jfuzzylogic.sourceforge.net) in FADSE. A user can define rules in a standard FCL file (IEC 61131 part

7). In this article we have developed and implemented the following rules derived from our experience in computer

architecture design:

IF Number_Of_Physical_Register_Sets IS small/big THEN Decode/Issue/Commit_Width IS small/big

IF SLVP_size IS small/big THEN L1_Data_Cache IS big/small

We have selected the Mamdani-type fuzzy systems [17]. These imply the following steps that need to be carried to

extract information: fuzzification of the input variables, evaluating the rules, aggregating the outputs and then

 12

defuzzification. The fuzzification was done using trapezoidal functions. For the evaluation the min function was used

for “and” and max for “or”. For inference the Mamdani implication has used (min). The rule aggregation was performed

using the Mamdani aggregation (max). This system was selected because of its popularity.

Two different mutation operators were used. Both of them are based on the bit flip mutation. To preserve

diversity, the information provided by the fuzzy rules is not always taken into consideration. To obtain this, a

probability of applying the fuzzy information (called fuzzy probability) is used. The only difference between the

implemented methods is how the probability to apply the information provided by the fuzzy rules is computed.

In the simple implementation this fuzzy probability is constant during the run of the algorithm and it is set to be

equal with the probability of mutation (mutation_prob). If the fuzzy rule is not applied the algorithm switches to the

classical bit flip mutation for the current parameter. The second implementation uses a Gaussian probability so there is a

higher chance to apply the fuzzy rules for the first generations. As the DSE process runs, the probability to apply the

fuzzy rules decreases to a value close to mutation_prob. We have selected the parameters of the Gaussian function such

that at generation 5 the function is close to 0. The Gaussian function is then translated so that the minimum is close to

mutation_prob. The final form of the function is shown below:

()
probmutationeprobmutationxf

x

final _)_1()(
2

2

)150(2 +⋅−= ⋅
−

 (8)

where x increases with one for each individual generated by the algorithm. The result of this function is further

multiplied by 0.8 and by the membership value [27] to obtain a maximum value less than 1.

Figure 3 presents the results obtained with fuzzy information compared with the previous results.

0.25

0.3

0.35

0.4

0.45

0.5

7.00E+09 1.20E+10 1.70E+10 2.20E+10 2.70E+10 3.20E+10 3.70E+10 4.20E+10 4.70E+10

Energy

C
P

I

Run without fuzzy Fuzzy with constant probability Manual

Figure 3. Pareto front comparisons between the run with fuzzy rules and the run with relaxed borders

 13

We have selected the run with relaxed borders (called “run without fuzzy”) as the reference run since it has

found solutions all along the approximated Pareto front. In Figure 3 we compare the run with fuzzy information

(constant probability to apply the fuzzy rules) with the run without fuzzy. It can be easily observed that the run with

fuzzy information obtains very good results. Figure 3 also shows that the run with fuzzy rules finds better results in the

vicinity of energy 1.20E+10 [cyclesW ⋅] than the run without fuzzy information. We have also compared the run with

fuzzy rules with the one with initial good configurations and we observed that in fact the later obtains a few individuals

which are slightly better.

0.25

0.3

0.35

0.4

0.45

0.5

7.00E+09 1.20E+10 1.70E+10 2.20E+10 2.70E+10 3.20E+10 3.70E+10 4.20E+10 4.70E+10

Energy

C
P

I

Fuzzy with constant probability Fuzzy with Gaussian probability Manual

Figure 4. Pareto fronts comparison between the runs with fuzzy rules

Figure 4 performs a comparison between the results obtained with fuzzy information but with different methods

of calculating the probability to use the information provided by them. The run with constant probability finds better

individuals in the area with low energy. Having an almost 80% probability to apply the rules during the first generations

might lead to a loss in diversity of the individuals on the parameters influenced by the rules. This fact might explain the

poorer results.

Figure 5 gives us two types of information: about the convergence of the algorithms and about the quality of

results. It can be observed that the algorithms tend to stop the rapid evolution after 15 generations (initial run is an

exception). The algorithms were run until generation 25 due to time constraints.

 14

0.54

0.56

0.58

0.6

0.62

0.64

0.66

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Generation count

H
yp

er
vo

lu
m

e

Initial run
Run with relaxed borders
Run with initial good configurations
Run with fuzzy with constant probability
Run with fuzzy with Gaussian probability

Figure 5. Hypervolume comparison

After a comparison of the hypervolume values we can conclude that: the initial run with restricted borders

obtained the worse results. Relaxing the borders considerably improved the quality of results even though the size of the

design space has become larger by a factor of around 2 (from 3.8*1013 to 7.7*1013). Having good configurations

inserted in the initial population can lead to very good results but it starts to perform worse after generation 14, rising a

bit after generation 19 and then dropping dramatically after generation 23. Observing the obtained Pareto front

approximation and its evolution we have concluded that the algorithm tends to focus on a smaller area of the space,

falling into local minima. This can be explained by the lack of diversity of the initial configurations, since all the

individuals inserted differ on only two parameters from a total of 19.

The run with a constant probability of accepting the results from the fuzzy rules provided the best results. The

run with a Gaussian probability of applying the information provided by the fuzzy rules had a similar behavior at the

beginning with the run using relaxed borders. After generation 12 the results are slightly worse. We can conclude that

imposing a high probability of the rules will reduce diversity, especially with a small number of rules. In our previous

work more rules were used and the membership functions had many intervals (associated linguistic terms) [13]. In this

situation the runs with Gaussian probability provided better results.

It can be observed that using some extra knowledge (initial configurations or fuzzy rules) makes the algorithm

start from a better initial population (see the hypervolume values at generation 1) and, as a consequence, the algorithm’s

convergence speed is better.

The hypervolume corresponding to the run with a constant probability of applying the fuzzy rules at generation

15, is reached by the run with relaxed borders only at generation 24. This is a great improvement. In our experiments,

running one generation on 96 cores belonging to an Intel Xeon powered HPC system, with cores running at 2GHz,

 15

takes around one day. Running with fuzzy rules we achieved the same results 9 days earlier (36% faster) than without

fuzzy rules. Additionally, after the same amount of time (25 generations) the hypervolume reached by the run with

fuzzy is never reached by the simple run. If more qualitative information would have been provided through the fuzzy

rules we do expect even bigger improvements. A single experiment takes around 25 days. Running all the five

experiments took over 4 months of simulation on a HPC system using 96 cores.

All the runs evaluate roughly the same amount of individuals: around 2200 from the 2500 individuals sent for

evaluation; the rest are reused from the database (12% reuse degree). This means that the produced offspring are almost

all of them new/different individuals. This behavior is caused by the extremely large design space. In previous

explorations on different simulators (smaller design space – 106) around 60% reuse degree was observed [2, 12].

After analyzing the best results obtained during the automatic DSE process we extracted the parameter values for

optimal configurations from either high performance or low energy viewpoints. The results are presented in Table 2. As

it can be observed, some parameters like Decode width and SLVP size must have high values in order to obtain both

high performance and low energy.

Parameter For high performance For low energy

Sets 2048 32

Block size (bytes) 256 64 DL1 cache

Associativity 2 2

Sets 1024 32

Block size (bytes) 16 256 IL1 cache

Associativity 8 1

Sets 8192 256

Block size (bytes) 256 256 UL2 cache

Associativity 4 16

SLVP (entries) 4096-8192 4096-8192

Decode / Issue / Commit width 32 / 16 / 32 16-32 / 4-8 / 16-32

ROB / LSQ / IQ size (entries) 1024 / 512-1024 / 128 256 / 32-64 / 64

Number of physical register sets (int / fp) 8 / 8 2 / 2

Int / fp ALU 8 / 8 8 / 2

Int / fp MUL/DIV 8 / 8 8 / 8

Table 2. Parameter values for optimal configurations

 16

6. Conclusions and Further Work

We have observed that the SLVP helps maintaining a better CPI and energy consumption when the cache sizes

are reduced. Therefore, the optimal configurations, obtained by both the manual and automatic design space exploration

of our SLVP-based superscalar architecture, have lower cache sizes than the baseline architecture without SLVP.

FADSE is able to find good configurations by evaluating a very small percentage of the total search space. We

reduced the number of evaluated configurations to only 2500, representing 3*10-11% of the huge constrained design

space of 77 thousands of billions configurations. The experimental results show that our automatic design space

exploration provides significantly better configurations than our previous manual design space exploration.

Starting FADSE with initial good configurations can accelerate the DSE process. It is recommended that the

configurations differ on multiple parameters so that diversity is preserved. In our situation the configurations differed

only on three parameters thus leading to a loss of diversity and finally it could not explore the entire Pareto front.

Using fuzzy rules can considerably accelerate the DSE process (9 days earlier to reach the same result in our

situation). Also the obtained results are better than the ones obtained with no prior information after the same amount of

time. In this concrete optimization process the constant probability to apply the fuzzy rules lead to better results. In our

previous work – where the number of rules was higher and had more linguistic terms associated to the membership

functions – we have obtained better results by modulating the probability with a Gaussian function during the

generations. With a larger number of rules the individuals are mutated into a more diverse population. Thus, forcing the

rules to be applied often does not lead to a loss of diversity in the population.

We plan to repeat these experiments on SLVP-based SMT and multi-core architectures. Other further work

possibilities are to access the SLVP only in the case of miss in both the L1 and L2 data caches, to index the SLVP table

with the memory address instead of the instruction address, to exploit an N-value locality instead of 1-value locality as

we are currently exploiting, to evaluate set-associative SLVP configurations and yet another one to design and

implement an adaptive dynamic run-time thermal manager (temporarily deactivating the SLVP unit, voltage scaling,

frequency scaling, migrating computation, etc.). We also plan to explore, as the third objective, the die size needed by

the memory architecture.

Acknowledgments

This work was partially supported by the POSDRU financing contract 7706 and by the Romanian National Council of

Academic Research through the grant CNCSIS no. 485/2009-2011. Also we would like to thank Camil Bancioiu for his

support with the M-SIM connector and to Ciprian Radu for his useful comments.

 17

References

[1] Brooks, D., Tiwari, V., and Martonosi, M.: ‘Wattch: A Framework for Architectural-Level Power Analysis and

Optimizations’, Proc. of the 27th Int. Symposium on Computer Architecture, Vancouver, Canada, June 2000, pp. 83-94.

[2] Calborean, H., Jahr, R., Ungerer, T., and Vintan, L.: ‘Optimizing a Superscalar System using Multi-objective Design

Space Exploration’, Proc. of the 18th Int. Conf. on Control Systems and Computer Science (CSCS), Bucharest,

Romania, May 2011, pp. 339-346.

[3] Calborean, H.: ‘Multi-Objective Optimization of Advanced Computer Architectures using Domain-Knowledge’,

PhD Thesis, “Lucian Blaga” University of Sibiu, Romania, 2011 (PhD Supervisor: Prof. Lucian Vintan, PhD), Sibiu,

Romania, 2011.

[4] Chang, S.C., Li, W.Y.H., Kuo, Y.J., and Chung, C.P.: ‘Early Load: Hiding Load Latency in Deep Pipeline

Processor’, Proc. of the Asia-Pacific Computer Systems Architecture Conference (ACSAC), Taiwan, August 2008, pp.

1-8.

[5] Chen, J., Dubois, M., and Stenström, P.: ‘Integrating Complete-System and User-Level Performance/Power

Simulators: the SimWattch Approach’, Proc. of the IEEE Int. Symposium on Performance Analysis of Systems and

Software, Austin, Texas, USA, March 2003, pp. 1-10.

[6] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: ‘A Fast and Elitist Multiobjective Genetic algorithm: NSGA-

II’, IEEE Transactions On Evolutionary Computation, VOL. 6, 2002, NO. 2, pp. 182-197.

[7] Desmet, V., Girbal, S., Temam, O., and France, B. F.: ‘Archexplorer. org: Joint compiler/hardware exploration for

fair comparison of architectures’, Proc. of the 6th HiPEAC Industrial Workshop, Paris, France, November 2008.

[8] Durillo, J. J., Nebro, A. J., Luna, F., Dorronsoro, B., and Alba, E.: ‘jMetal: A Java Framework for Developing

Multi-Objective Optimization Metaheuristics’, E.T.S.I. Informatica, Campus de Teatinos: Departamento de Lenguajes y

Ciencias de la Computacion, University of Malaga, 2006.

[9] Gellert, A., Florea, A., and Vintan, L.: ‘Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar

Architecture’, Journal of Systems Architecture, Elsevier, Volume 55, 2009, Issue 3, pp. 188-195.

[10] Gellert, A., Palermo, G., Zaccaria, V., Florea, A., Vintan, L., and Silvano, C.: ‘Energy-Performance Design Space

Exploration in SMT Architectures Exploiting Selective Load Value Predictions’, Int. Conf. on Design, Automation and

Test in Europe (DATE 2010), Dresden, Germany, March 2010, pp. 271-274.

[11] Hilton, A. D.: ‘Energy Efficient Load Latency Tolerance: Single-Thread Performance For The Multi-Core Era’,

2010, Publicly accessible Penn Dissertations. Paper 188, http://repository.upenn.edu/edissertations/188.

 18

[12] Jahr, R., Ungerer, T., Calborean, H., and Vintan, L.: ‘Automatic Multi-Objective Optimization of Parameters for

Hardware and Code Optimizations’, Proc. of the Int. Conf. on High Performance Computing & Simulation, Istanbul,

Turkey, July 2011, pp. 308-316.

[13] Jahr, R., Calborean, H., Ungerer, T., and Vintan, L.: ‘Boosting Design Space Explorations with Existing or

Automatically Learned Knowledge’, accepted for publication at 16th International GI/ITG Conference on

“Measurement, Modelling and Evaluation of Computing Systems” and “Dependability and Fault-Tolerance” (MMB &

DFT 2012), Kaiserslautern, Germany, March 19 - 21, 2012.

[14] Jia, Z. J., Pimentel, A. D., Thompson, M., Bautista, T., and Núnez, A.: ‘NASA: A generic infrastructure for

system-level MP-SoC design space exploration’, in Embedded Systems for Real-Time Multimedia (ESTIMedia), 2010

8th IEEE Workshop on, 2010, pp. 41–50.

[15] Kang, S. and Kumar, R.: ‘Magellan: a search and machine learning-based framework for fast multi-core design

space exploration and optimization’, in Proceedings of the conference on Design, automation and test in Europe,

Munich, Germany, 2008, pp. 1432-1437.

[16] Lipasti, M. H., Wilkerson, C. B., and Shen, J. P.: ‘Value Locality and Load Value Prediction’, Proc. of the 7th Int.

Conf. on Architectural Support for Programming Languages and Operating Systems, Cambridge, Massachusetts, USA,

October 1996, pp. 138-147.

[17] Mamdani, E. H., and Assilian, S.: ‘An experiment in linguistic synthesis with a fuzzy logic controller’,

International Journal of Man-Machine Studies, 7(1), 1975, pp.1–15.

[18] Mariani, G., Palermo, G., Silvano, C., and Zaccaria, V.: ‘Meta-model Assisted Optimization for Design Space

Exploration of Multi-Processor Systems-on-Chip’, Proc. of the 12th Int. Euromicro Conf. on Digital System Design,

Architectures, Methods and Tools. DSD ’09, IEEE Computer Society, Patras, Greece, August 2009, pp. 383–389.

[19] Mutlu, O., Kim, H., and Patt, Y. N.: ‘Address-Value Delta (AVD) Prediction: A Hardware Technique for

Efficiently Parallelizing Dependent Cache Misses’, IEEE Transactions on Computers, Vol. 55, No. 12, 2006, pp. 1491-

1508.

[20] Nebro, A., Durillo, J., Garcia-Nieto, J., Coello, C. A., Luna, F., and Alba, E.: ‘SMPSO: A new PSO-based

metaheuristic for multi-objective optimization’, in Proceedings of the IEEE Symposium Series on Computational

Intelligence, 2009, pp. 66–73.

[21] Sarangi, S. R., Liu, W., Torrellas, J., and Zhou, Y.: ‘ReSlice: Selective Re-Execution of Long-Retired

Misspeculated Instructions Using Forward Slicing’, Proceedings of the 38th annual IEEE/ACM International

Symposium on Microarchitecture, Barcelona, Spain, November 12-16, 2005, pp.257-270.

 19

[22] Sharkey, J., Ponomarev, D., and Ghose, K.: ‘M-SIM: A Flexible, Multithreaded Architectural Simulation

Environment’, Technical Report CS-TR-05-DP01, Department of Computer Science, State University of New York at

Binghamton, October 2005.

[23] Shivakumar, P., and Jouppi, N. P.: ‘Cacti 3.0: An Integrated Timing, Power, and Area Model’, WRL Research

Report, Aug 2001, USA.

[24] Sierra, M. R., and Coello, C. A. C.: ‘Improving PSO-based multi-objective optimization using crowding, mutation

and e-dominance’, Evolutionary Multi-Criterion Optimization, Springer-Verlag, 2005, pp. 505-519.

[25] Silvano, C., Fornaciari, W., Palermo, G., Zaccaria, V., Castro, F., Martinez, M., Bocchio, S., Zafalon, R., Avasare,

P., Vanmeerbeeck, G., Ykman-Couvreur, C., Wouters, M., Kavka, C., Onesti, L., Turco, A., Bondi, U., Mariani, G.,

Posadas, H., Villar, E., Wu, C., Dongrui, F., Hao, Z., and Shibin, T.: ‘MULTICUBE: Multi-Objective Design Space

Exploration of Multi-Core Architectures’, Proc. of the IEEE Int. Annual Symposium on VLSI, Lixouri Kefalonia,

Greece 2010, pp. 488–493.

[26] Vintan, L., Florea, A., and Gellert, A.: ‘Focalising dynamic value prediction to CPU’s context’, IEE Proceedings –

Computers and Digital Techniques, Stevenage, United Kingdom, Volume 152, Issue 4 (July), 2005, pp. 457-536.

[27] Zadeh, L. A.: ‘Fuzzy Sets’, Journal of Information and Control, Vol. 8, No. 3, 1965, pp. 338-353.

[28] Zitzler, E., Laumanns, M., and Thiele, L.: ‘SPEA2: Improving the strength Pareto evolutionary algorithm’, in

Eurogen, 2001, pp. 95–100.

