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1. Introduction 

Ubiquitous systems strive for adaptation to user needs by utilizing information about the current context 
in which a user’s appliance works. A new quality of ubiquitous systems may be reached if context 
awareness is enhanced by predictions of future contexts based on current and previous context 
information. Such a prediction enables the system to proactively initiate actions that enhance the 
convenience of the user or that lead to an improved overall system. 

Humans typically act in a certain habitual pattern, however, they sometimes interrupt their behavior pattern and 
they sometimes completely change the pattern. Our aim is to relieve people of actions that are done habitually 
without determining a person’s action. The system should learn habits automatically and reverse assumptions if 
a habit changes. The predictor information should therefore be based on previous behavior patterns and applied 
to speculate on the future behavior of a person. If the speculation fails, the failing must be recognized, and the 
predictor must be updated to improve future prediction accuracy [4, 5]. 

For our application domain we chose next location prediction instead of general context prediction. The 
algorithms may also be applicable for other more general context domains; however, there already exist 
numerous scenarios within our application’s domain. Some sample scenarios may be the following [4]: 
• Smart doorplates that are able to direct visitors to the current location of an office owner based on a 

location-tracking system and predict if the office owner is soon coming back. This scenario is 
currently developed at Augsburg University and we are involved in the context prediction approach. 

• Elevator prediction could anticipate at which floor an elevator will be needed next. 
• Routing prediction for cellular phone systems may predict the next radio cell a cellular phone owner 

will enter based on his previous movement behavior. 
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To predict or anticipate a future situation, learning techniques as e.g. Markov Chains, Hidden Markov 
Models, Bayesian Networks, Time Series or Neural Networks are obvious candidates. The challenge is to 
transfer these algorithms to work with context information. 

Petzold, et al., in their work [4], transformed some prediction algorithms used in branch prediction techniques 
of current high-performance microprocessors, to handle context prediction. They evaluated the one-level one-
state, two-state, and multiple-state predictors, and the two-level two-state predictors with local and global first-
level histories. The evaluation was performed by simulating the predictors with behavior patterns of people 
walking through a building as workload. Their simulation results show that the context predictors perform well 
but exhibit differences in training and retraining speed and in their ability to learn complex patterns. 

In another work [5], Petzold, et al., introduced context prediction techniques based on previous behavior 
patterns, in order to anticipate a person’s next movement. They analyzed the two-level predictors with 
global first-level histories and the two-state predictors and they compared these predictors with the 
Prediction by Partial Matching (PPM) method. They evaluated the predictors by some movement 
sequences of real persons within an office building reaching up to 59% accuracy in next location 
prediction without pre-training and, respectively, up to 98% with pre-training. 

Rabiner in his work [7], shows how HMMs can be applied to selected problems in speech recognition. 
His paper presents the theory of HMMs from the simplest concepts (discrete Markov chains) to the most 
sophisticated models (variable duration, continuous density models, etc.). He also illustrated some 
applications of the theory of HMMs to simple problems in speech recognition, and pointed out how the 
techniques have been applied to more advanced speech recognition problems. 

Liu et al. in their work [3], describe a HMM based framework for hand gesture detection and recognition. 
The goal of gesture interpretation is to improve human-machine communication and to bring human-
machine interaction closer to human-human interaction, making possible new applications such as sign 
language translation. They present an efficient method for extracting the observation sequence using the 
feature model and Vector Quantization, and demonstrate that, compared to the classic template-based 
methods, the HMM-based approach offers a more flexible framework for recognition. 

Galata et al. in their work [2], present a novel approach for automatically acquiring stochastic models of 
the high-level structure of a human activity without the assumption of any prior knowledge. The process 
involves temporal segmentation into plausible atomic behaviour components and the use of variable 
length Markov models for the efficient representation of behaviours. Their experimental results 
demonstrate that the use of variable length Markov models provides an efficient mechanism for learning 
complex behavioral dependencies and constraints. 

Machine Learning techniques based on HMMs has been also applied to problems in computational biology and 
they can be used as mathematical models of molecular processes and biological sequences. The goal of 
computational biology is to elucidate additional information required for drug design, medical diagnosis and 
medical treatment. The majority of molecular data used in computational biology consists in sequences of 
nucleotides corresponding to the primary structure of DNA and RNA, or sequences of amino acids 
corresponding to the primary structure of proteins. Birney in his work [1], reviews gene-prediction HMMs and 
protein family HMMs. The role of gene-prediction in DNA is to discover the location of genes on the genome. 
HMMs have also been used in protein profiling to discriminate between different protein families and predict a 
new protein-family or subfamily. Yoon et al. in their work [10], proposed a new method based on context-
sensitive HMMs, which can be used for predicting RNA secondary structure. The RNA secondary structure 
results from the base pairs formed by the nucleotides of RNA. The context-sensitive HMM can be viewed as 
an extension of the traditional HMM, where some of the states are equipped with auxiliary memory. Symbols 
that are emitted at certain states are stored in the memory, and they serve as the context that affects the emission 
and transition probabilities of the model. They demonstrated that the proposed model predicts the secondary 
structure very accurately, at a low computational cost. 

This paper focuses on a Hidden Markov Model (HMM) approach, introducing the HMM-based predictors 
and comparing them with simple Markov and respectively neural predictors. Our application predicts the 
next room based on the history of rooms, visited by a certain person moving within an office building. 
We evaluate these predictors by some movement sequences of real persons, acquired from the Smart 
Doorplates project developed at Augsburg University [4, 5, 6]. The next sections describe the proposed 
Hidden Markov Models and present the simulation results. 
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2. Hidden Markov Models of order 1 

2.1. Elements of a HMM of Order 1 
1. N - the number of hidden states, with S = {S0, S1, …, SN-1} the set of hidden states, and qt the hidden 

state at time t. N will be varied in order to obtain the optimal value. 

2. M - the number of observable states, with V = {V0, V1, …, VM-1} the set of observable states 
(symbols), and Ot the observable state at time t. 

3. A = {aij} - the transition probabilities between the hidden states Si and Sj, where 
1,0],[ 1 −≤≤=== + NjiSqSqPa itjtij . 

4. B = {bj(k)} - the probabilities of the observable states Vk in hidden states Sj, where 
10,10],[)( −≤≤−≤≤=== MkNjSqVOPkb jtktj .  

5. π = {πi} - the initial hidden state probabilities, where 10],[ 1 −≤≤== NiSqP iiπ . 

There are also defined the following variables: 

− ),...()( 21 λα ittt SqOOOPi ==  - the forward variable [7], representing the probability of the 
partial observation sequence until time t, and hidden state Si at time t, given the model 

),,( πλ BA= . 

− ),...()( 21 λβ itTttt SqOOOPi == ++  - the backward variable [7], representing the probability of the 

partial observation sequence from t+1 to the end T, given hidden state Si at time t and the model ),,( πλ BA= . 

− ),...,(),( 211 λξ Tjtitt OOOSqSqPji === +  - the probability of being in hidden state Si at 

time t, and hidden state Sj at time t+1, given the model ),,( πλ BA=  and the observation sequence. 

− ),...()( 21 λγ Titt OOOSqPi ==  - the probability of being in hidden state Si at time t, given the 

model ),,( πλ BA=  and the observation sequence. 

− H - the history (the number of observations used in the prediction process). In [7] and [8] the entire 
observation sequence is used in the prediction process (H=T), but in some practical applications the 
observation sequence increases continuously, therefore it is necessary its limitation. Thus, the last H 
observations can be stored in a left shift register. 

− I - the maximum number of iterations in the adjustment process. Usually the adjustment process ends 
when the probability of the observation sequence doesn’t increase anymore, but for a faster 
adjustment, it is limited the number of iterations. 

2.2. Adjustment Process of a HMM of Order 1 
1. INITIALIZE ),,( πλ BA= ; 

2. COMPUTE 1...,,0,1...,,0,...,,1),(),,(),(),( −=−== NjNiTtijiii tttt γξβα ; 

3. ADJUST THE MODEL ),,( πλ BA= ; 

4. IF )( λOP  INCREASES, GO TO 2. 

2.3. Initialization of the Model of Order 1 
− The transition probabilities between the hidden states A(NXN) = {aij}, are randomly initialized to 

approximately 1/N, each row summing to 1. 

− The probabilities of the observable states B(NXM) = {bj(k)}, are randomly initialized to 
approximately 1/M, each row summing to 1. 

− The initial hidden state probabilities π(1XN) = {πi} are randomly set to approximately 1/N, their sum being 1. 
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2.4. Prediction Algorithm Using a HMM of Order 1 

1. T=1 (T is the length of the observation sequence); 

2. T=T+1; 

if  T<H  go to  2.) 

3. c=0  (c is the number of current iteration, its maximum value is given by I); 

4. The model ),,( πλ BA=  is repeatedly adjusted based on the last H observations 

THTHT OOO ...,,, 21 +−+−  (the entire observation sequence if H=T), in order to increase the 

probability of the observation sequence )...( 21 λTHTHT OOOP +−+− . In 4.1, 4.2 and 4.3 steps 
the denominators are used in order to obtain a probability measure, and to avoid underflow. As 
Stamp showed in [8], underflow is inevitable without scaling, since the probabilities tend to 0 
exponentially as T increases. 

4.1. Compute the forward variable α  in a recursive manner: 
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4.2. Compute the backward variable β  in a recursive manner: 
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where  
)(itβ  is the probability of the partial observation sequence from t+1 to the end T 

(Ot+1Ot+2…OT), given hidden state Si at time t and the model ),,( πλ BA= . 
4.3. Compute ξ : 
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where ),( jitξ is the probability of being in hidden state Si at time t and respectively Sj at time 

t+1, given the observation sequence THTHT OOO ...21 +−+−  and the model ),,( πλ BA= . 
4.4. Compute γ : 

∑
−

=

−=−+−==
1

0
1...,,0,1...,,1),,()(

N

j
tt NiTHTtjii ξγ , where )(itγ  is the 

probability of being in the hidden state Si at time t, given the model ),,( πλ BA=  and the 

observation sequence THTHT OOO ...21 +−+− . 
4.5. Adjust π: 

)(1 iHTi +−= γπ  - represents the expected number of times the hidden state is Si at the initial 
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The numerator is the expected number of transitions from state Si to Sj, while the denominator 
is the expected number of transitions from state Si to any state. 
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 - the probability of observation symbol Vk given that the model is in 

hidden state Sj. The numerator is the expected number of times the model is in hidden state Sj 
and the observation symbol is Vk, while the denominator is the expected number of times the 
model is in hidden state Sj. 

4.8. c=c+1; 

if  )]...(log[)]...(log[ 11 λλ THTTHT OOPOOP +−+− >  and   c<I    then  go to 4.).  

Since P would be out of the dynamic range of the machine [7], we compute the log of P, using 
the following formula [8]: 
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1.) At current time T, it is predicted the next observation symbol OT+1, using the adjusted model 

),,( πλ BA= : 

- choose hidden state Si at time T,  i=0, …, N-1,  maximizing )(iTα ; 

- choose next hidden state Sj (at time T+1),  j=0, …, N-1,  maximizing ija ; 

- predict next symbol Vk (at time T+1),  k=0, …, M-1,  maximizing )(kb j . 
If the process continues, then T=T+1  and  go to  3.). 
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3. A Possible Generalization: Hidden Markov Models of Order R 

In this paragraph we try to develop a Hidden Markov Model of order R, R≥1. There are multiple 
possibilities for doing this but we present here only one we considered the most appropriate. The key of 
our proposed model is represented by the so-called hidden super-states, a combination of R primitive 
hidden states. Therefore, the main difference, comparing with an order 1 HMM, consists in the fact that 
the stochastic hidden Markov model is of order R instead of order one. This new model is justified 
because we suppose that in some specific applications, there are longer correlations within the hidden 
state model. In other words, we suppose that the next hidden state is better determined by the current 
super-state rather than by the current primitive state. As it can be further seen, the new proposed model is 
similar with the well-known HMM of order one, excepting that the generic primitive hidden state 
becomes now a generic super-state. 

3.1. Elements of a HMM of Order R 

1. R - the order of HMM (a combination of R primitive hidden states form a so called super-state). 

2. N - the number of primitive hidden states (belonging to a HMM of order 1), with 
}...,,,{ 110 −

= RNSSSS being the set of hidden super-states and Sqt ∈ the hidden super-
state at time t. The current super-state determines the transition into the next one based on a 
super-state transition matrix with restrictions (this transition matrix involve a non-ergodic model, 
see example of Table 1). N will be varied in order to obtain the optimal value. 

3. M - the number of observable states, with V = {V0, V1, …, VM-1} the set of observable states 
(symbols), and Ot the observable state at time t. 

4. A = {aij} - the transition probabilities between the hidden super-states Si and Sj, where 

1,0],[ 1 −≤≤=== +
R

itjtij NjiSqSqPa . 

5. B = {bj(k)} - the probabilities of the observable states Vk, considering the current hidden super-
state Sj, where 10,10],[)( −≤≤−≤≤=== MkNjSqVOPkb R

jtktj . 

6. π = {πi} - the initial hidden super-state probabilities, where 
10],[ 1 −≤≤== R

ii NiSqPπ . 

In order to simplify the terminology, in the rest of the paper we’ll refer to the hidden super-states as 
simply hidden states belonging to the HMM of order R. 

We also define the following variables: 

− ),...()( 21 λα ittt SqOOOPi ==  - the forward variable [7], representing the probability of the 

partial observation sequence until time t, and hidden state Si at time t, given the model ),,( πλ BA= . 

− ),...()( 21 λβ itTttt SqOOOPi == ++  - the backward variable [7], representing the probability 
of the partial observation sequence from t+1 to the end T, given hidden state Si at time t and the 
model ),,( πλ BA= . 

− ),...,(),( 211 λξ Tjtitt OOOSqSqPji === +  - the probability of being in hidden state Si at 

time t, and hidden state Sj at time t+1, given the model ),,( πλ BA=  and the observation sequence. 

− ),...()( 21 λγ Titt OOOSqPi ==  - the probability of being in hidden state Si at time t, given 

the model ),,( πλ BA=  and the observation sequence. 

− H - the history (the number of observations used in the prediction process). In [7] and [8] the entire 
observation sequence is used in the prediction process (H=T), but in some practical applications the 
observation sequence increases continuously, therefore it is necessary its limitation. Thus, the last H 
observations can be stored in a left shift register having a certain length. 
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− I - the maximum number of iterations in the adjustment process. Usually the adjustment process ends 
when the probability of the last H observations doesn’t increase anymore, but for a faster adjustment, 
it is limited the number of iterations. 

For a HMM of order R with N hidden states, the transition probabilities between the hidden states A(NRXNR) = 
{aij}, are stored in a table with NR rows and NR columns but not all cells of the table are used; there are only N 
consistent (possible) transitions from each state involving a non-ergodic model. The following table, for 
example, corresponds to a HMM of order 3 (R=3) with 2 primitive hidden states (N=2): 

j 
0 1 2 3 4 5 6 7 

 

AAA 
AAB 

ABA ABB BAA BAB BBA BBB 

0 AAA X X       
1 AAB   X X     
2 ABA     X X   
3 ABB       X X 
4 BAA X X       
5 BAB   X X     
6 BBA     X X   

 
 
 
i 

7 BBB       X X 

Table 1. Consistent Transitions for a HMM of Order 3 (R=3), with 2 Hidden States (N=2) 

There are used only the consistent cells marked with “X”, because transitions are possible only between 
states which end and respectively start with the same (R-1) primitive hidden states. The consistent cells of 
the transition table are given by the following formulas: 

− For next hidden states (columns) 1...,,0 −= RNj , are consistent only the current hidden states 

(rows) 11 )1(...,,0 −− ⋅−+



⋅+



= RR NN

N
jN

N
ji ; 

− For current hidden states (rows) 1...,,0 −= RNi , are consistent only the next hidden states 

(columns) 1)mod(...,,)mod( 11 −+⋅⋅= −− NNNiNNij RR . 

3.2. Adjustment Process of a HMM of Order R 
1. Initialize ),,( πλ BA= ; 

2. Compute 1...,,0,1...,,0,...,,1),(),,(),(),( −=−== RR
tttt NjNiTtijiii γξβα ; 

3. Adjust the model ),,( πλ BA= ; 

4. If )( λOP  increases, go to 2. 

3.3. Initialization of the Model of Order R 

1. The transition probabilities between the hidden states A(NRXNR) = {aij}, are randomly initialized to 
approximately 1/N; the sum of each row’s elements must be 1. The hidden state transition 
probabilities are initialized for 1...,,0 −= RNi  and 

1)mod(...,,)mod( 11 −+⋅⋅= −− NNNiNNij RR . 

2. The probabilities of the observable states B(NRXM) = {bj(k)}, are randomly initialized to 
approximately 1/M; the sum of each row’s elements must be 1. 

3. The initial hidden state probabilities π(1XNR) = {πi} are randomly set to approximately 1/NR, their 
sum being 1. 
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3.4. Prediction Algorithm Using a HMM of Order R 

1. T=1  (T is the length of the observation sequence); 

2. T=T+1; 

 if  T<H  go to  2.) 

3. c=0  (c is the number of current iteration, its maximum value is given by I); 

4. The model ),,( πλ BA=  is repeatedly adjusted based on the last H observations 

THTHT OOO ...,,, 21 +−+−  (the entire observation sequence if H=T), in order to increase the 

probability of the observation sequence )...( 21 λTHTHT OOOP +−+− . In 4.1, 4.2 and 4.3 the 
denominators are used in order to obtain a probability measure, and to avoid underflow. As Stamp 
showed in [8], underflow is inevitable without scaling, since the probabilities tend to 0 exponentially 
as T increases. 
4.1. Compute the forward variable α  in a recursive manner: 
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where )( jtα  is the probability of the partial observation sequence until time t     (OT-H+1 … 

Ot), and hidden state Sj at time t, given the model ),,( πλ BA= . Since, by definition, 
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4.2. Compute the backward variable β  in a recursive manner: 
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where )(itβ  is the probability of the partial observation sequence from t+1 to the end T 

(Ot+1Ot+2…OT), given hidden state Si at time t and the model ),,( πλ BA= . 
4.3. Compute ξ : 
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,1)mod(...,,)mod(,1...,,0 11 −+⋅⋅=−= −− NNNiNNijNi RRR  where 

),( jitξ is the probability of being in hidden state Si at time t and respectively Sj at time t+1, 

given the observation sequence THTHT OOO ...21 +−+−  and the model ),,( πλ BA= . 
4.4. Compute γ : 
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NiTHTtjii ξγ , where )(itγ  is 

the probability of being in hidden state Si at time t, given the model ),,( πλ BA=  and the 

observation sequence THTHT OOO ...21 +−+− . 
4.5. Adjust  π: 

)(1 iHTi +−= γπ - represents the expected number of times the hidden state is Si 

)1...,,0( −= RNi  at the initial time 1+−= HTt . 
4.6. Adjust A: 
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ξ
  - the probability of transition from hidden state Si to Sj,  

where 1...,,0 −= RNi  and 1)mod(...,,)mod( 11 −+⋅⋅= −− NNNiNNij RR . 
The numerator is the expected number of transitions from state Si to Sj, while the denominator 
is the expected number of transitions from state Si to any state. 

4.7. Adjust B: 
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γ

 - the probability of observation symbol Vk   ( 1...,,0 −= Mk ) given 

that the model is in hidden state Sj   ( 1...,,0 −= RNj ). The numerator is the expected 
number of times the model is in hidden state Sj and the observation symbol is Vk, while the 
denominator is the expected number of times the model is in hidden state Sj. 

4.8. c=c+1; 

if  )]...(log[)]...(log[ 11 λλ THTTHT OOPOOP +−+− >  and   c<I    then  go to 4.).  

Since P would be out of the dynamic range of the machine [7], we compute the log of P, using 
the following formula [8]: 



26 Studies in Informatics and Control, Vol. 15, No.1, March.2006 

∑
∑ ∑∑ +−= −

=

⋅−+





⋅+



=

−

−

=
+−

+−



























⋅⋅

−



















⋅
−=

−

−

T

HTt N

j

NN
N
j

N
N
ji

tjijt

N

i
HTii

THT
R

R

R

R

Obai
Ob

OOP
2 1

0

)1(

0

1

1

0
1

1 1

1

)()(

1log
)(

1log)]...(log[

α
π

λ

 
1.) At time T, it is predicted the next observation symbol OT+1, using the adjusted model 

),,( πλ BA= : 

- choose hidden state Si at time T,  1...,,0 −= RNi , maximizing )(iTα ; 
- choose next hidden state Sj (at time T+1), 

1)mod(...,,)mod( 11 −+⋅⋅= −− NNNiNNij RR , maximizing ija ; 

- predict next symbol Vk (at time T+1), 1...,,0 −= Mk , maximizing )(kb j . 
If the process continues, then T=T+1  and  go to  3.). 

4. Experimental Results 
Our application predicts the next room based on the history of rooms, visited by a certain person moving 
within an office building. We evaluate these HMM predictors by some movement sequences of real 
persons developed by the research group at the University of Augsburg [6]. In this work we are interested 
in predicting the next room from all rooms except for the own office.  

Each line from the original benchmarks [6] represents a person’s movement (his/her entry in a room). It 
contains the movement’s date and hour, the room’s name, the person’s name and a timestamp. In the 
codification process we eliminated from the benchmark the common corridor, because it could behave as 
noise. Table 2 shows how looks the benchmark before and after the room codification process. 

Original benchmark Benchmark after 
room codification 

2003.07.07 10:13:45; 402; Employee2; 1057565625801 0 
2003.07.07 10:21:41; corridor; Employee2; 1057566101067 - 
2003.07.07 10:21:45; 411; Employee2; 1057566105152 1 
2003.07.07 10:21:48; corridor; Employee2; 1057566108771 - 
2003.07.07 10:21:54; 402; Employee2; 1057566114338 0 

Table 2. The First Lines From a Certain Benchmark (With a Movement Sequence of Employee 2) 
Before and After the Room Codification Process. 

After the codification process the benchmarks contain only the room codes (0÷13), because in this 
starting stage of our work only this information is used in the prediction process. We used two benchmark 
types: some short benchmarks containing about 300-400 movements and some long benchmarks 
containing about 1000 movements. We used the short benchmarks to pre-train the HMM predictors, and 
the long benchmarks for evaluations. 

We started with a HMM of order 1 with 2 hidden states (N=2), and we tested it on the fall benchmarks – 
developed at Augsburg University [6] – without corridor. The following simulation methodology was 
used in order to predict each room from a certain benchmark: we predicted the next room at time t based 
on the entire room sequence from that benchmark until time t-1. We compared a HMM without attached 
confidence automata with HMMs using different confidence automata. We denoted as n rooms m states 
conf an m-state confidence counter, associated to each sequence of the last n rooms visited by the person. 
The 4-state automata have 2 predictable states, while the 2-state automata have only 1 predictable state. In 
the case of using 4-state automata, a prediction is generated in each of the two predictable states [9]. 
Table 3 shows that the best average prediction accuracy (AM) is obtained when using a 4-state 
confidence for each sequence of 2 rooms: 
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Benchmark no conf 2 rooms 4 states conf 2 rooms 2 states conf 1 room 4 states conf 
Employee 1 91.89 92.68 90.80 93.33

Employee 2 77.9 84.06 86.41 79.24
Employee 3 65.66 73.82 71.05 69.35
Boss 79.07 84.72 84.07 84.35
AM 78.63 83.82 83.0825 81.5675

Table 3. Comparing a HMM Without Confidence with HMMs Using Different Types of Confidence. 

We continued our simulations varying the number of hidden states. We used again the fall benchmarks 
[6], and a HMM of order 1 with 4-state confidence automata associated to each sequence of two rooms. 
Table 4 shows how is affected the prediction accuracy of a HMM by the number of hidden states: 

Benchmark N=1 N=2 N=3 N=4 N=5 N=6 N=7 

Employee 1 
92.68 92.68 92.68 92.68 92.68 92.68 92.68

Employee 2 84.15 84.06 84 84.57 82.84 82.45 83.13
Employee 3 73.37 73.82 74.65 74.63 76.55 73.91 74.04
Boss 84.72 84.72 85.6 85.49 87.17 85.82 85.6
AM 83.73 83.82 84.2325 84.3425 84.81 83.715 83.8625

Table 4. Study of the Number of Hidden States Using HMM with 4-State Confidence Automata. 

It can be observed in Table 4 that for a HMM of order 1, the optimal number of hidden states is 5. Our 
scientific hypothesis is that the hidden states are the five working days of a week. We varied again the 
number of hidden states without using the confidence automata. Table 5 shows that in this case the 
optimal number of hidden states is 1.  

Benchmark N=1 N=2 N=3 N=4 N=5 N=6 N=7 
Employee 1 91.89 91.89 91.89 91.89 91.89 91.89 90.09

Employee 2 79.77 77.9 76.77 76.02 75.65 74.53 75.65
Employee 3 70.18 65.66 64.9 64.15 65.28 61.13 64.9
Boss 79.49 79.07 72.38 71.12 72.8 71.54 71.12
AM 80.33 78.63 76.48 75.79 76.4 74.77 75.44

Table 5. Study of the Number of Hidden States Using HMM Without Confidence Automata. 

We compare now the best HMM of order 1 with different configurations of some “equivalent” NNs (Neural 
Networks) developed in our previous work [9] and respectively simple Markov predictors. “Equivalent” means 
in this case that we compare all these different predictors considering that they have, however, the same inputs. 
We used the HMM of order 1 with 5 hidden states considering an attached 4-state confidence automata. We 
compared it with a statically pre-trained NN with a room history length of 1 (NN of order 1) and 2 (NN of 
order 2), a learning rate of 0.2 and a threshold of 0.3 (having the same confidence automata). We also 
compared the HMM with some simple Markov predictors of order 1 and 2 (having the same confidence 
automata). The NN was statically trained on the summer benchmarks [6], and each predictor was tested on the 
longer fall benchmarks [6]. Table 6 presents the prediction accuracies obtained with the HMM, NN and 
Markov predictors, all with 4-state confidence automata associated to each sequence of two rooms: 

Benchmark HMM of order 1 
(N=5) 

NN of order 1 NN of order 2 Markov of order 1 Markov of order 2 

Employee 1 92.68 92.4 92.5 93.42 93.33

Employee 2 82.84 84.35 85.96 83.43 84.33
Employee 3 76.55 73.91 74.17 73.75 75
Boss 87.17 86.71 85.93 85.82 85.71
AM 84.81 84.34 84.64 84.1 84.59

Table 6. Comparing a HMM of Order 1 with NN and Markov Predictors Using 4-State Confidence Automata. 

Employee 2 hasn’t got a behavior correlated with days of week (see Table 4 and also Table 6). It can be 
seen in Table 6 too, because the Markov predictor of order 1 outperforms the HMM of order 1. NNs are 
better than HMM on Employee 2, but we suspect that these results are too optimistic due to the NN’s pre-
training (first case) and respectively due to the NN’s order 2 (second case).  
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Table 7 presents the prediction accuracies obtained with the HMM, NN and simple Markov predictors 
(the same configuration) without confidence automata: 

Benchmark HMM of order 1 
(N=1) 

NN of order 1 NN of order 2 Markov of order 1 Markov of order 2 

Employee 1 91.89 89.18 90.09 81.98 75.67

Employee 2 79.77 77.15 76.4 74.15 70.03
Employee 3 70.18 62.26 67.54 64.9 56.98
Boss 79.49 76.56 75.73 73.64 62.34
AM 80.33 76.28 77.44 73.66 66.25

Table 7. Comparing a HMM of order 1 with NN and simple Markov predictors without confidence automata. 

In order to confirm or infirm our scientific hypothesis that, in the case of HMM with 4-state confidence automata, the 
five hidden states might be the working days of the week, we implemented a predictor which consists of five simple 
Markov predictors. Each Markov predictor is associated to one of the 5 days (Monday, Tuesday, …, Friday). Table 8 
compares this predictor containing 5 simple Markov predictors with HMMs and simple Markov predictors, using the 
4-state confidence automata, and shows that only on one person (Boss) is confirmed our hypothesis. 

Benchmark HMM of order 1 
(N=5) 

Markov of order 1 5 Markov predictors of 
order 1 

Employee 1 92.68 93.42 86.53 

Employee 2 82.84 83.43 78.44 
Employee 3 76.55 73.75 55.81 
Boss 87.17 85.82 88.46 
AM 84.81 84.1 77.31 

Table 8. Comparing a HMM of order 1 with Markov of order 1 and a predictor consisting in 5 
Markov predictors using 4-state confidence automata. 

Table 9 compares the same predictors (HMM, Markov, 5 Markovs) without using the confidence automata. In 
this case, however, the best number of hidden states was 1. We obtained (for all benchmarks) lower prediction 
accuracies when we used 5 simple Markov predictors, even related to the simple Markov predictor. 

Benchmark HMM of order 1 
(N=1) 

Markov of order 1 5 Markov predictors of 
order 1 

Employee 1 91.89 81.98 63.46 
Employee 2 79.77 74.15 59.77 
Employee 3 70.18 64.9 50.57 
Boss 79.49 73.64 59.57 
AM 80.33 73.66 58.34 

Table 9. Comparing a HMM of order 1 with Markov of order 1 and a predictor consisting in 5 
Markov predictors without using confidence automata. 

In order to decrease prediction latency, we pre-trained HMMs on the summer benchmarks [6] and after 
that we tested them on the longer fall benchmarks [6]. Table 10 presents comparatively the obtained 
results when we used HMM with 5 hidden states and 4-state confidence automata: 

HMM of order 1 (N=5) Pre-trained HMM of order 1 (N=5) 
Benchmark Prediction 

accuracy 
[%] 

Total time 
[ms] 

Prediction Time 
of the last room 

[ms] 

Prediction 
accuracy 

[%] 
Total time 

[ms] 

Prediction Time 
of the last room 

[ms] 

Employee 1 
92.68 128074 2053 92.68 3455 40

Employee 2 82.84 620572 4787 84.15 17195 110
Employee 3 76.55 589537 4466 73.37 26578 90
Boss 87.17 489243 4256 84.72 13720 100
AM 84.81 456856.5 3890.5 83.73 15237 85

Table 10. Comparing simple HMMs with pre-trained HMMs, both with 4-state confidence 
automata, in terms of prediction latency. 



Studies in Informatics and Control, Vol. 15, No.1, March.2006 29 

As it can be observed, with pre-trained HMMs we obtained better prediction latencies (about 85 ms) but 
for Employee 3 and Boss we obtained lower prediction accuracies. The same prediction accuracies were 
obtained using the untrained HMM with only 1 hidden state (see Table 4). Thus, in our opinion, through 
pre-training, the HMM with 5 hidden states, uses only 1 of the hidden states. We repeated the same 
simulations without using the confidence automata. Table 11 presents the results for HMM with 5 hidden 
states and Table 12 presents the results for HMM with 1 hidden state: 

HMM of order 1 (N=5) Pre-trained HMM of order 1 (N=5) 
Benchmark Prediction 

accuracy 
[%] 

Total time 
[ms] 

Prediction Time 
of the last room 

[ms] 

Prediction 
accuracy 

[%] 
Total time 

[ms] 

Prediction Time 
of the last room 

[ms] 

Employee 1 91.89 118701 2273 91.89 3175 50
Employee 2 75.65 652768 5158 79.77 16393 120
Employee 3 65.28 620322 4727 70.18 62390 90
Boss 72.8 519497 4517 79.49 13088 111
AM 76.4 477822 4168.75 80.33 23761.5 92.75

Table 11. Comparing simple HMMs with pre-trained HMMs, both without confidence automata, in 
terms of prediction latency (N=5). 

HMM of order 1 (N=1) Pre-trained HMM of order 1 (N=1) 
Benchmark Prediction 

accuracy 
[%] 

Total time 
[ms] 

Prediction Time 
of the last room 

[ms] 

Prediction 
accuracy 

[%] 
Total time 

[ms] 

Prediction Time 
of the last room 

[ms] 

Employee 1 91.89 471 20 91.89 441 10

Employee 2 79.77 2393 20 79.77 2003 10
Employee 3 70.18 2333 20 70.18 2594 10
Boss 79.49 1963 20 79.49 2234 10
AM 80.33 1790 20 80.33 1818 10

Table 12. Comparing simple HMMs with pre-trained HMMs, both without confidence automata, in 
terms of prediction latency (N=1). 

As it can be seen in Table 11, for a HMM with 5 hidden states through pre-training there are obtained 
better prediction latencies and better prediction accuracies. It is interesting that we obtained the same 
prediction accuracies using the untrained HMM with 1 hidden state (see Table 7, N=1). And it is more 
interesting that for HMM with 1 hidden state, after pre-training, the prediction accuracy is the same again. 
These results encourage our previous conclusion, that the best number of hidden states is 1, when we 
don’t use confidence automata. Through pre-training, the HMM with 5 hidden states and without 
confidence automata, uses only 1 of the hidden states. 

The next parameter we varied was the order of HMM. We studied HMMs of different orders and the 
same number of hidden states (N=2). As it can be observed in Table 13, with a first order HMM were 
obtained the best prediction accuracies: 

With 4-state confidence Without confidence BENCHMARK 
R=1 R=3 R=5 R=1 R=3 R=5 

EMPLOYEE 1 92.68 83.11 80.76 91.89 81.98 84.68 
EMPLOYEE 2 84.06 64.06 62.30 77.9 61.04 58.80 
EMPLOYEE 3 73.82 63.63 53.33 65.66 53.58 50.56 
BOSS 84.72 76.15 73.27 79.07 61.08 60.25 
AM 83.82 71.73 67.41 78.63 64.42 63.57 

Table 13. Studying HMMs of different orders. 
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5. Conclusions and Further Work 
This paper analyzed machine learning techniques based on HMMs, used in a ubiquitous computing 
application. Our goal was to predict accurately the movements of persons within an office building. Two 
predictor types were analyzed: HMMs with confidence automata and respectively without confidence 
automata. The experimental results show that HMMs outperform other implemented prediction 
techniques such as Neural Network and respectively Markov predictors. The evaluations show that the 
simplest configuration of HMM (N=1 and R=1, equivalent with a simple Markov model of order 0) is the 
most accurate for this specific application. We continued our study implementing a statically pre-trained 
HMM and we obtained lower prediction latencies.  

Predicting from all rooms except own room and using a HMM with 4-state confidence automata, we 
obtained an average prediction accuracy of 84.81%, but the prediction accuracy measured on some local 
predictors grew up to over than 92%. As a further work we intend to use our NN and HMM developed 
predictors in other context prediction in ubiquitous computing applications (e.g., next cell movements in 
GSM communications based on Nokia’s benchmarks). 
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