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Abstract — In this paper we continue our work on detecting and 

predicting unbiased branches. We centered on two directions: 

first, based on a simple example from Perm – Stanford 

benchmark, we show that extending context information some of 

branches in certain contexts became fully biased, thus diminishing 

the frequency of unbiased branches at benchmark level. Second, 

we use some state-of-the art branch predictors to predict the 

unbiased branches. Following our aims, we developed the ABPS 

tool (Advanced Branch Prediction Simulator), an original useful 

simulator written in Java that performs trace-driven simulation 

on 25 benchmarks from Stanford and SPEC suites. 

Keywords― unbiased branches, neural predictors, trace-driven 

simulation, benchmarking. 

I. INTRODUCTION 

The branch prediction becomes a challenge problem for 

processors’ designers. Without performing branch prediction 

(BP) it won’t be possible to aggressively exploit program’s 

instruction level parallelism. All present branch prediction 

techniques are limited in their accuracy. An important limitation 

cause is given by the used prediction contexts (global and local 

histories respectively path information). Using these dynamic 

contexts, some branches are unbiased and non-deterministically 

shuffled, therefore unpredictable. The percentages of these 

branches represent a fundamental prediction limitation. One of 

our goals is to demonstrate the insufficiency of global 

correlation information (many times the global history is too 

short and doesn’t keep the really correlated branches with the 

predicted one, retaining quite enough noise). If the context 

would permit it could be seen a correlation between branches 

situated at a large distance in the dynamic instruction stream. 

Also, the local correlation reduces the noise included in global 

history. Another aim of our work is to use some state-of-the art 

neural branch predictors (simple and fast path-based perceptron) 

to predict the unbiased branches. 

The organization of the rest of this paper is as follows. In 

section II we review related work in the field of branch 

prediction. Section III shows, based on a simple example from 

Perm – Stanford benchmark, the influence of different length 

context information (global and local) on unbiased branches. In 

section IV is presented the software design of ABPS. Section V 

includes simulation methodology and experimental results 

obtained using the developed ABPS simulator. Finally, section 

VI suggests directions for future works and concludes the paper. 

II. RELATED WORK 

The nowadays processors use hybrid prediction structures, 

combining two (or more) two-level adaptive predictors [1], one 

correlated with local history of the predicted branch (PAg 

predictor) and other correlated with global history of the 

predicted branch (GAg predictor). The selection between two 

predictions is made using a confidence table that records the 

dynamic behavior of each predictor. The processor Alpha 21264 

embeds a hybrid predictor having a local predictor with 1024 

entries (keeping a local history of 10 bits) and a global predictor 

with 4096 entries reaching to almost 95% of prediction 

accuracy [2]. 

The most accurate single-component branch predictors in the 

literature are neural branch predictors [2, 3, and 4]. Their main 

advantages consist in possibility of using longer correlation 

information at linear cost. The Perceptron predictor – the 

simplest neural branch predictor – keeps a table of weights 

vectors (small integers that are learned through the perceptron 

learning rule) [2]. As in global two-level adaptive branch 

prediction, a shift register records a global history of outcomes 

of conditional branches, recording true for taken, or false for not 

taken. To predict a branch outcome, a weights vector is selected 

by indexing the table with the branch address modulo the 

number of weights vectors. The dot product of the selected 

vector and the global history register is computed, where true in 

the history represents 1 and false represents -1. If the dot 

product is at least 0, then the branch is predicted taken, 

otherwise it is predicted not taken. Once the perceptron output 

has been computed, the training algorithm starts: it increments 

the i-th correlation weight when the branch outcome agrees with 

the i-th bit from global branch history shift register and 

decrements the weight otherwise. Unfortunately, the high 

latency of the perceptron predictor and impossibility to predict 

the linearly inseparable branches makes it impractical yet for 

hardware implementation. In order to reduce the prediction 

latency, the Fast Path-based Perceptron [3] chooses its weights 

for generating a prediction according to the current branch’s 

path, rather than according to the branch’s PC and history 

register. The prediction latency is hidden due to the speculative 

calculation of the perceptron’s output. Intel Co includes the 

perceptron predictor in one of its IA-64 simulators for 

researching future microarchitectures [2]. The piecewise linear 

branch predictors [4] use a piecewise-linear function for a given 



branch, exploiting in this way different paths that lead to the 

same branch in order to predict – otherwise linearly inseparable 

– branches. 

In [5] the authors proposed a hybrid scheme that employs two 

Prediction by Partial Matching (PPM) Markovian predictors, 

one that predicts based on local branch histories and one based 

on global branch histories. The two independent predictions are 

combined using a simple hardware feasible perceptron. 

Vintan et al. proved that a branch in a certain dynamic 

context is difficult-to-predict if it is unbiased and the outcomes 

are shuffled [6]. In other words, a dynamic branch instruction is 

unpredictable with a given prediction information if it is 

unbiased in the considered dynamic context and the behavior in 

that certain context cannot be modeled through Markov 

stochastic processes of any order. 

III. UNBIASED BRANCH PREDICTION – A CHALLENGE 

PROBLEM FOR PROCESSORS’ DESIGNERS 

A. Analyzing Branch Prediction Contexts Influence 

In this section we analyze the present day branch prediction 

used contexts (global and local histories respectively path 

information) from the point of view of their limits in predicting 

unbiased branches. The main idea is: in a perfect dynamic 

context all branch instances should have the same outcome. If 

the outcome is not the same a first solution might consists in 

extending the context information. We vary the contexts length 

and observed that some of dynamic contexts remained 

unpredictable despite of their length. 

In the following we present partially the C and assembly code 

of Stanford Perm benchmark that generates a suite of 

permutations. We detect unbiased branches and we focused on 

two of the most important branch instructions (having PC=35 

and PC=58 after compiling process). 

/**********************************************/ 

Permute (int n){ 

  int k; 

  pctr = pctr+1; 

  if(n != 1) # the first branch instruction analyzed (PC=35) 

  { 

    Permute(n-1); 

    for( k = n-1; k >= 1; k--)# the second branch instruction 

analyzed (PC=58) 

    { 

 Swap(&permarray[n], &permarray[k]); 

 Permute(n-1); 

 Swap(&permarray[n], &permarray[k]); 

    }; 

  } 

} 

/**********************************************/ 

_Permute: 

 SUB SP, SP, #128 

 ST 0(SP), RA 

 ST 8(SP), R17 

 ST 12(SP), R18 

 ST 16(SP), R19 

 ST 20(SP), R20 

 MOV R20, R5 

 LD R13, _pctr 

 ADD R13, R13, #1 

 ST _pctr, R13 

 EQ B1, R20, #1 

               BT B1, L8 (#0) # after compiling process this 

branch has the address 35 (PC=35) 

 ADD R17, R20, #-1 

 MOV R5, R17 

 BSR RA, _Permute (#0)  

 MOV R18, R17 

 LES B1, R18, #0 

 BT B1, L8 (#0)  

 ASL R13, R20, #2 

 MOV R7, #_permarray 

 ADD R19, R13, R7 

 ASL R13, R18, #2 

 ADD R17, R13, R7 

L12: 

 MOV R5, R19 

 MOV R6, R17 

 BSR RA, _Swap (#0)  

 ADD R5, R20, #-1 

 BSR RA, _Permute (#0)  

 MOV R5, R19 

 MOV R6, R17 

 BSR RA, _Swap (#0) 

 ADD R17, R17, #-4 

 ADD R18, R18, #-1 

 GTS B1, R18, #0 

              BT B1, L12 (#0) # after compiling process this 

branch has the address 58 (PC=58) 

*************************************************** 

In the following simulations the settled parameters are: Path 

= not selected, Unbiased polarization degree = 0.95, HRl and 

HRg being the local and global history. 

We define polarization index (bias) of a certain branch 

context as: )
NTT

NT
 ,

NTT

T
max( bias

++

= , where T and 

NT represent number of “taken” respective “not taken” branch 

instances corresponding to that certain context. 

1. Parameters: HRl = not selected, HRg on 3 bits, => 

Unbiased contexts: 25.0[%] 

From the unbiased branches list we selected just two branch 

instructions in two global contexts: 

PC: 35 HRg: 101 T: 2520 NT: 1100 Bias: 0.696 

PC: 58 HRg: 111 T: 1419 NT: 3620 Bias: 0.718 

2. Parameters: HRl = not selected, HRg on 4 bits, => 

Unbiased contexts: 17.813[%] 

PC: 35 HRg: 0101 T: 840 NT: 260 Bias: 0.763 

PC: 35 HRg: 1101 T: 1680 NT: 840 Bias: 0.667 

PC: 58 HRg: 0111 T: 1419 NT: 1100 Bias: 0.563 

PC: 58 HRg: 1111 T: 0 NT: 2520 Bias: 1.000 => The 

branch with the address PC: 58 in context HRg: 1111 

became fully biased. Practically it doesn’t appear in the 

unbiased branch list. 



3. Parameters: HRl on 1 bit, HRg on 4 bits, => Unbiased 

contexts: 17.813[%] 

PC: 35 HRg: 0101 HRl: 0 T: 840 NT: 260 Bias: 0.763 

PC: 35 HRg: 0101 HRl: 1 – this context doesn’t occur 

PC: 35 HRg: 1101 HRl: 0 T: 1680 NT: 840 Bias: 0.667 

PC: 35 HRg: 1101 HRl: 1 – this context doesn’t occur 

PC: 58 HRg: 0111 HRl: 0 T: 1419 NT: 1100 Bias: 0.563 

PC: 58 HRg: 0111 HRl: 1 – this context doesn’t occur 

4. Parameters: HRl on 2 bits, HRg on 4 bits, => Unbiased 

contexts: 9.673[%] 

PC: 35 HRg: 0101 HRl: 00 T: 840 NT: 260 Bias: 0.763 

PC: 35 HRg: 0101 HRl: 10 – this context doesn’t occur 

PC: 35 HRg: 1101 HRl: 00 – this context doesn’t occur 

PC: 35 HRg: 1101 HRl: 10 T: 1680 NT: 840 Bias: 0.667 

PC: 58 HRg: 0111 HRl: 00 T: 1419 NT: 260 Bias: 0.845 

PC: 58 HRg: 0111 HRl: 10 T: 0 NT: 840 Bias: 1.000=> The 

branch with the address PC: 58 in context HRg: 0111 and 
HRl: 10 became fully biased. Practically it doesn’t appear in 

the unbiased branch list. 

… 
 

5. Parameters: HRl on 2 bits, HRg on 7 bits, => Unbiased 

contexts: 9.668[%] 

PC: 58 HRg: 1110111 HRl: 00 T: 1419 NT: 260 Bias: 0.845 

6. Parameters: HRl on 2 bits, HRg on 8 bits, => Unbiased 

contexts: 8.134[%] 

PC: 58 HRg: 01110111 HRl: 00 T: 579 NT: 260 Bias: 0.690 

PC: 58 HRg: 11110111 HRl: 00 T: 840 NT: 0 Bias: 1.000=> 

The branch with the address PC: 58 in context HRg: 
11110111 and HRl: 00 became fully biased. Practically it 

doesn’t appear in the unbiased branch list. 

Conclusion: As it can be observed, increasing the context 

length, some branches in certain contexts became fully biased, 

but a great percentage still remains unbiased. 

 

Comparing the previous results it can be observed that as 

longer (increase the history length) or richer (local history it is 

added beside global history) became the context as smaller 

became the unbiased branches percentage. From the 1
st
 case to 

2nd one, the unbiased branches percentages decrease with 

7.187% and it can be observed how the two unbiased branches 

in small contexts are still unsolved. However, the branch with 

the address PC: 58 in context HRg: 1111 became fully biased 

and decrease the number of unbiased branches with 2520. 

Practically it doesn’t appear in the unbiased branch list. In the 

3
rd

 case (adding one bit of local history) the unbiased branches 

percentage remains unchanged. In the 4
th

 local history is set on 

2 bits and much more contexts became biased (the unbiased 

branches percentage decreases with 8.14%). Although, there are 

some contexts that remain unbiased (see above: PC: 35 HRg: 

x101 HRl: x0 – where x could be 0 or 1). 

Analyzing the code sequence it can be said that the results 

regarding to unbiased branches are correct. It can be observed 

that to reach conditional branch 58, the previously 3 branches 

are every time Taken (return from permute function, call of 

swap function and return from it – not necessarily correlated 

with the branch 58). One reason for the larger percentage of 

unbiased branches refers to the fact that the branches within the 

global history length may not have correlation with the current 

branch, or the relevant history might be too far away. If the 

context would permit it could be seen a correlation between 

branches situated at a large distance in the dynamic instruction 

stream. Recurrence and function calls hide some branches that 

are really correlated with the analyzed one. Also, the local 

correlation reduces the noise included in global history. Similar 

examples we found in tower benchmark that solves the Hanoi 

towers problem. 

The insufficiency of global correlation information is 

remarked also in the case of programs or data structures, which 

produce a variable number of history bits as the data changes 

(data correlation). This occurs in the link lists or trees cases 

where it is tested the address of an element (usually comparison 

with 0) and then follow a recurrent call of the same function to 

test the next element in the tree (left or right sub-tree). The same 

situation it happen in the hash table cases having link lists to 

solve the collisions. A possible solution could be to use data 

values or structural information to keep the predictor more 

synchronized with data. We tried such an approach in [7]. 

B. Predicting Unbiased Branches using State-of-the-art 

Predictors 

The prediction process supposes accessing the tables for 

every instruction from traces and establishing the prediction 

function of associated prediction automaton or perceptron 

computed output. After branch’s resolution, it starts the 

updating algorithm (every good prediction increase the 

automatons state or perceptron weights, otherwise decreasing 

the same parameters). The automatons are implemented as 

saturating counters and, in the neural predictors’ case, the 

threshold keeps from overtraining, permitting the perceptron to 

adapt quickly at every changing behavior. 

ABPS includes the following predictors implemented: GAg, 

PAg, PAp, GShare and Perceptron. The two-level predictors 

implemented (first 4) request as inputs parameters: number of 

entries in prediction table, the history length (global / local). 

Besides input parameters used by two-level predictors, the 

neural predictors (Simple Perceptron and Fast Path-based 

Perceptron) need some additional: threshold value used for 

learning algorithm, number of bits for storing the weights. Each 

predictor can predict all branches or only unbiased branches. 

If the user selected the Perceptron predictor (Simple or Fast 

Path-based), the simulation results consist in four important 

metrics. The prediction accuracy is the number of correct 

predictions divided to total number of dynamic branches. We 

compute also a confidence metric that represents the total cases 

when the prediction was correct and the perceptron didn’t need 

to be trained (the magnitude of perceptron output was greater 

than threshold) divided to the total number of correct 

predictions. While the first two have impact on processor’s 

performance, the next two metrics have direct influence on 

transistors’ budget and integration area (the number of 

perceptrons used in prediction process and respectively the 

saturation degree of perceptrons). The saturation degree 

represents the percentage of cases when the weights of 

perceptrons can’t be increased / decreased because they are 



saturated. If the last two metrics are quite low means that the 

perceptrons are underused. The prediction accuracy and the 

usage degree of prediction table are computed also in the case 

of classical two-level predictors. 

IV. SOFTWARE DESIGN OF ABPS SIMULATOR 

The user diagram (Fig.1a) illustrates the general user 

interaction process with ABPS. A generic user can mainly 

interact with ABPS in two ways (not fully distinct): 

• Default start -> the user starts a simulation using the 

default input parameters. 

• Custom start (Choose simulation type) -> the user 

chooses: 

1. The simulation type – detection or prediction; 

2. The benchmarks (Stanford and/or SPEC 2000); 

3. The values for the simulation parameters. 

After the three steps presented above, the user can start the 

simulation process. Both in the Default start and in the Custom 

start cases, after the simulation process is ready, simulation 

results are shown. 

NOTES: Steps 1, 2, 3 can be executed in any order. Either of 

steps 1 and 3 is not mandatory. If one of them is not executed, 

default values are used. Step 2 (choosing the benchmarks) is 

necessary the first time (initially no traces are selected for 

simulation) for both user interaction types. 

The activity diagram (Fig.1b) shows a general view for the 

simulation process flow in ABPS: 

• Initialization – all simulation parameters are set (traces, 

simulation type: detection / prediction, detector / 

predictor values); 

• Starts simulation – the simulation begins after all the 

inputs had been set. The simulation process consists 

basically in processing each trace included (in a 

multithreaded manner); 

• Read trace – each trace is processed, branch after 

branch. Each branch instruction is fed to the selected 

detector / predictor. This is done until all branch 

instructions (from the selected trace) are processed. 

During this, results are accumulated. 

• Processing results – after a trace had been processed, 

the obtained results are processed in order to compute 

certain metrics; 

• Display results – the results are displayed and the 

simulation process stops. 

NOTE: At any time the simulation process can be aborted 

from the GUI (Graphic User Interface).  

 

 

Figure 1.  UML Diagrams – User and Activity perspectives 

 



 
Figure 2.  Sequence Diagram

The sequence diagram (Fig.2) presents in detail how ABPS 

performs the process of detecting unbiased branches. The 

process starts in the GUI, where the detection parameters are 

set. After this initialization, the user can trigger the detection 

process, which will be managed by another thread (1: create, 

st:SimulatorThread). In this way, the GUI will not block itself, 

leaving the user with the ability to perform other tasks from 

ABPS. The simulation thread will create and start a detection 

thread (1.1: create, dt:DetectorThread). The detection thread 

will manage all the detection process (1.1.1: Create1, 

tr:TraceReader). When all the above initializations were 

performed, the detection process actually starts (2: 

startSimulation(), 2.1: run()): the trace used for simulation is 

processed using the appropriate detector (see: 2.1.1 – 2.1.6). 

Finally, the detection thread signals (by returning the results) 

the simulation thread that the detection is done (2.2: Destruct3). 

In the same manner, the simulation thread signals the GUI 

thread (3:Destruct4), which will display the results. 

NOTE: Although the above diagram doesn’t show, at any 

time the detection process can be aborted from the GUI. 

V. SIMULATION METHODOLOGY AND 

EXPERIMENTAL RESULTS 

We developed ABPS (Advanced Branch Prediction 

Simulator) an original interactive graphical trace-driven 

simulator [8]. We simulate eight C Stanford integer 

benchmarks, designed by Professor John Hennessy (Stanford 

University), to be computationally intensive and representative 

of non - numeric code while at the same time being compact. 

Also, we simulate all of the SPEC CPU2000 integer 

benchmarks, and all of the SPEC CPU95 integer benchmarks 

that are not duplicated in SPEC CPU2000, each benchmark 

having 1 million dynamic branch instructions. All these 

benchmarks cover a lot of applications ranging from 

compression (text/image) to word processing, from compilers 

and architectures to games enhanced with artificial intelligence, 

etc. We choose to simulate different version of benchmarks 

(Stanford and SPEC) in order to discover how these different 

testing programs influence the neural branch predictors’ micro-

architectural features. 

The ABPS simulator provides a wider variety of 

configuration options. Thus, it can be determined how vary 

prediction accuracy with input parameters (number of entries in 

prediction tables, history length, number of bits for weights 

representation, threshold value used for perceptron training, 

etc). ABPS is written in Java and assures three of the features 

specific to almost high-performance standard simulators: free 

availability for use, extensibility and portability. Full inheritance 

and polymorphism is used, allowing for ease of extension in the 

future adding new functionalities. 

Repeating the detection methodology for a length-ordered set 

of contexts it could be observed how decreases the number of 

unbiased branches from tested benchmarks. Figure 3 shows the 

reduction in the number of unbiased branches varying the length 

of prediction contexts from 8 to 32 bits. The percentage 

reduction in the number of unbiased branches decreases from 

25.12% to 9.26%. We consider that the last value is too high 

and further investigations are required. 
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Figure 3.  Reducing the number of unbiased branches with increasing global 

history register length 

Figure 4 graphical illustrates the influence of global history 

on prediction accuracy using a fast path-based perceptron 

predictor. It is very clear that as longer became the global 

history length as greater became the prediction accuracy on all 

branches. Also, the prediction accuracy ascendant trend still 

remains when the number of perceptrons increases. The best 

prediction accuracy obtained with a fast path-based perceptron 

predictor – 95.21%, is superior to that provided by Alpha 

21264, but having a hardware budget of 8
th
 times smaller 

(≈32Kbytes vs. ≈257Kbytes). 
 

Ap = f(HrG) 

94,03

92,81

95,21

94,56

91,50
92,00
92,50
93,00
93,50
94,00
94,50
95,00
95,50

100 200 1024

Number of perceptrons

P
re

d
ic

ti
o

n
 A

cc
u

ra
c
y

 

[%
]

HrG=8

HrG=16

HrG=24

HrG=32

 
Figure 4.  The influence of global history on prediction accuracy using a fast 

path-based perceptron 

Despite of significant reduction of unbiased branches 

percentages (in average 26.79%) on five of SPEC benchmarks 

(gzip, vpr, parser, bzip2 and twolf) the prediction accuracy 

varies asymptotically (under 1.30% in average) whether global 

history length raises from 8 to 32 bits (see figure 5). We named 

these SPEC testing programs as critical benchmarks. The 

average prediction accuracy on these benchmarks is very low 

(91.06% – see figure 5). When global history length is 32 bits 

the unbiased branches percentage on the 5 critical benchmarks 

is still high (in average 15.90%) and may be responsible for the 

lower prediction accuracy. This is because the current amount 

of prediction information is limited (global-correlations). The 

use of such limited information means that unbiased branches 

cannot be predicted to a high degree of accuracy. Consequently, 

other information is required to predict branches which have 

been classified as unbiased (local, path or sign condition). 
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Figure 5.  Prediction accuracy on SPEC critical benchmarks 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have shown that the design of branch 

predictors should consider the identification of unbiased 

branches due to their negative impact on prediction accuracy. 

Repeating the detection methodology for a length-ordered set of 

contexts (varying the global history length from 8 to 32 bits) it 

could be observed that the percentage of unbiased branches 

decreases from 25.12% to 9.26% but still remains a quite 

significant percentage of unbiased branches. Further, we have 

demonstrated the insufficiency of global correlation 

information. We have therefore shown that even state of the art 

branch predictors are unable to accurately predict these 

unbiased branches (the best prediction accuracy measured on all 

branches using a fast path-based perceptron predictor is 

95.21%). We therefore consider that the use of more prediction 

contexts (some HLL code information) is required to further 

improve prediction accuracies. In order to efficiently use such 

information we consider it will be necessary to have a 

significant amount of compiler support. 
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