
Designing an Advanced Simulator for Unbiased

Branches’ Prediction

Adrian Florea
1
, Ciprian Radu

1
, Horia Calborean

1
, Adrian Crapciu

1
, Arpad Gellert

1
 and Lucian Vintan

1

1
 “Lucian Blaga” University of Sibiu, Computer Science Department, E. Cioran Street, No. 4, Sibiu-550025, ROMANIA,

Tel./Fax: +40-269-212716, E-mail: adrian.florea@ulbsibiu.ro, {radu_ciprianro, horia.calborean, adrian.crapciu}@yahoo.com,

arpad.gellert@ulbsibiu.ro, lucian.vintan@ulbsibiu.ro

Abstract — In this paper we continue our work on detecting and

predicting unbiased branches. We centered on two directions:

first, based on a simple example from Perm – Stanford

benchmark, we show that extending context information some of

branches in certain contexts became fully biased, thus diminishing

the frequency of unbiased branches at benchmark level. Second,

we use some state-of-the art branch predictors to predict the

unbiased branches. Following our aims, we developed the ABPS

tool (Advanced Branch Prediction Simulator), an original useful

simulator written in Java that performs trace-driven simulation

on 25 benchmarks from Stanford and SPEC suites.

Keywords― unbiased branches, neural predictors, trace-driven

simulation, benchmarking.

I. INTRODUCTION

The branch prediction becomes a challenge problem for

processors’ designers. Without performing branch prediction

(BP) it won’t be possible to aggressively exploit program’s

instruction level parallelism. All present branch prediction

techniques are limited in their accuracy. An important limitation

cause is given by the used prediction contexts (global and local

histories respectively path information). Using these dynamic

contexts, some branches are unbiased and non-deterministically

shuffled, therefore unpredictable. The percentages of these

branches represent a fundamental prediction limitation. One of

our goals is to demonstrate the insufficiency of global

correlation information (many times the global history is too

short and doesn’t keep the really correlated branches with the

predicted one, retaining quite enough noise). If the context

would permit it could be seen a correlation between branches

situated at a large distance in the dynamic instruction stream.

Also, the local correlation reduces the noise included in global

history. Another aim of our work is to use some state-of-the art

neural branch predictors (simple and fast path-based perceptron)

to predict the unbiased branches.

The organization of the rest of this paper is as follows. In

section II we review related work in the field of branch

prediction. Section III shows, based on a simple example from

Perm – Stanford benchmark, the influence of different length

context information (global and local) on unbiased branches. In

section IV is presented the software design of ABPS. Section V

includes simulation methodology and experimental results

obtained using the developed ABPS simulator. Finally, section

VI suggests directions for future works and concludes the paper.

II. RELATED WORK

The nowadays processors use hybrid prediction structures,

combining two (or more) two-level adaptive predictors [1], one

correlated with local history of the predicted branch (PAg

predictor) and other correlated with global history of the

predicted branch (GAg predictor). The selection between two

predictions is made using a confidence table that records the

dynamic behavior of each predictor. The processor Alpha 21264

embeds a hybrid predictor having a local predictor with 1024

entries (keeping a local history of 10 bits) and a global predictor

with 4096 entries reaching to almost 95% of prediction

accuracy [2].

The most accurate single-component branch predictors in the

literature are neural branch predictors [2, 3, and 4]. Their main

advantages consist in possibility of using longer correlation

information at linear cost. The Perceptron predictor – the

simplest neural branch predictor – keeps a table of weights

vectors (small integers that are learned through the perceptron

learning rule) [2]. As in global two-level adaptive branch

prediction, a shift register records a global history of outcomes

of conditional branches, recording true for taken, or false for not

taken. To predict a branch outcome, a weights vector is selected

by indexing the table with the branch address modulo the

number of weights vectors. The dot product of the selected

vector and the global history register is computed, where true in

the history represents 1 and false represents -1. If the dot

product is at least 0, then the branch is predicted taken,

otherwise it is predicted not taken. Once the perceptron output

has been computed, the training algorithm starts: it increments

the i-th correlation weight when the branch outcome agrees with

the i-th bit from global branch history shift register and

decrements the weight otherwise. Unfortunately, the high

latency of the perceptron predictor and impossibility to predict

the linearly inseparable branches makes it impractical yet for

hardware implementation. In order to reduce the prediction

latency, the Fast Path-based Perceptron [3] chooses its weights

for generating a prediction according to the current branch’s

path, rather than according to the branch’s PC and history

register. The prediction latency is hidden due to the speculative

calculation of the perceptron’s output. Intel Co includes the

perceptron predictor in one of its IA-64 simulators for

researching future microarchitectures [2]. The piecewise linear

branch predictors [4] use a piecewise-linear function for a given

branch, exploiting in this way different paths that lead to the

same branch in order to predict – otherwise linearly inseparable

– branches.

In [5] the authors proposed a hybrid scheme that employs two

Prediction by Partial Matching (PPM) Markovian predictors,

one that predicts based on local branch histories and one based

on global branch histories. The two independent predictions are

combined using a simple hardware feasible perceptron.

Vintan et al. proved that a branch in a certain dynamic

context is difficult-to-predict if it is unbiased and the outcomes

are shuffled [6]. In other words, a dynamic branch instruction is

unpredictable with a given prediction information if it is

unbiased in the considered dynamic context and the behavior in

that certain context cannot be modeled through Markov

stochastic processes of any order.

III. UNBIASED BRANCH PREDICTION – A CHALLENGE

PROBLEM FOR PROCESSORS’ DESIGNERS

A. Analyzing Branch Prediction Contexts Influence

In this section we analyze the present day branch prediction

used contexts (global and local histories respectively path

information) from the point of view of their limits in predicting

unbiased branches. The main idea is: in a perfect dynamic

context all branch instances should have the same outcome. If

the outcome is not the same a first solution might consists in

extending the context information. We vary the contexts length

and observed that some of dynamic contexts remained

unpredictable despite of their length.

In the following we present partially the C and assembly code

of Stanford Perm benchmark that generates a suite of

permutations. We detect unbiased branches and we focused on

two of the most important branch instructions (having PC=35

and PC=58 after compiling process).

/**/

Permute (int n){

 int k;

 pctr = pctr+1;

 if(n != 1) # the first branch instruction analyzed (PC=35)

 {

 Permute(n-1);

 for(k = n-1; k >= 1; k--)# the second branch instruction

analyzed (PC=58)

 {

 Swap(&permarray[n], &permarray[k]);

 Permute(n-1);

 Swap(&permarray[n], &permarray[k]);

 };

 }

}

/**/

_Permute:

 SUB SP, SP, #128

 ST 0(SP), RA

 ST 8(SP), R17

 ST 12(SP), R18

 ST 16(SP), R19

 ST 20(SP), R20

 MOV R20, R5

 LD R13, _pctr

 ADD R13, R13, #1

 ST _pctr, R13

 EQ B1, R20, #1

 BT B1, L8 (#0) # after compiling process this

branch has the address 35 (PC=35)

 ADD R17, R20, #-1

 MOV R5, R17

 BSR RA, _Permute (#0)

 MOV R18, R17

 LES B1, R18, #0

 BT B1, L8 (#0)

 ASL R13, R20, #2

 MOV R7, #_permarray

 ADD R19, R13, R7

 ASL R13, R18, #2

 ADD R17, R13, R7

L12:

 MOV R5, R19

 MOV R6, R17

 BSR RA, _Swap (#0)

 ADD R5, R20, #-1

 BSR RA, _Permute (#0)

 MOV R5, R19

 MOV R6, R17

 BSR RA, _Swap (#0)

 ADD R17, R17, #-4

 ADD R18, R18, #-1

 GTS B1, R18, #0

 BT B1, L12 (#0) # after compiling process this

branch has the address 58 (PC=58)

In the following simulations the settled parameters are: Path

= not selected, Unbiased polarization degree = 0.95, HRl and

HRg being the local and global history.

We define polarization index (bias) of a certain branch

context as:)
NTT

NT
 ,

NTT

T
max(bias

++

= , where T and

NT represent number of “taken” respective “not taken” branch

instances corresponding to that certain context.

1. Parameters: HRl = not selected, HRg on 3 bits, =>

Unbiased contexts: 25.0[%]

From the unbiased branches list we selected just two branch

instructions in two global contexts:

PC: 35 HRg: 101 T: 2520 NT: 1100 Bias: 0.696

PC: 58 HRg: 111 T: 1419 NT: 3620 Bias: 0.718

2. Parameters: HRl = not selected, HRg on 4 bits, =>

Unbiased contexts: 17.813[%]

PC: 35 HRg: 0101 T: 840 NT: 260 Bias: 0.763

PC: 35 HRg: 1101 T: 1680 NT: 840 Bias: 0.667

PC: 58 HRg: 0111 T: 1419 NT: 1100 Bias: 0.563

PC: 58 HRg: 1111 T: 0 NT: 2520 Bias: 1.000 => The

branch with the address PC: 58 in context HRg: 1111

became fully biased. Practically it doesn’t appear in the

unbiased branch list.

3. Parameters: HRl on 1 bit, HRg on 4 bits, => Unbiased

contexts: 17.813[%]

PC: 35 HRg: 0101 HRl: 0 T: 840 NT: 260 Bias: 0.763

PC: 35 HRg: 0101 HRl: 1 – this context doesn’t occur

PC: 35 HRg: 1101 HRl: 0 T: 1680 NT: 840 Bias: 0.667

PC: 35 HRg: 1101 HRl: 1 – this context doesn’t occur

PC: 58 HRg: 0111 HRl: 0 T: 1419 NT: 1100 Bias: 0.563

PC: 58 HRg: 0111 HRl: 1 – this context doesn’t occur

4. Parameters: HRl on 2 bits, HRg on 4 bits, => Unbiased

contexts: 9.673[%]

PC: 35 HRg: 0101 HRl: 00 T: 840 NT: 260 Bias: 0.763

PC: 35 HRg: 0101 HRl: 10 – this context doesn’t occur

PC: 35 HRg: 1101 HRl: 00 – this context doesn’t occur

PC: 35 HRg: 1101 HRl: 10 T: 1680 NT: 840 Bias: 0.667

PC: 58 HRg: 0111 HRl: 00 T: 1419 NT: 260 Bias: 0.845

PC: 58 HRg: 0111 HRl: 10 T: 0 NT: 840 Bias: 1.000=> The

branch with the address PC: 58 in context HRg: 0111 and
HRl: 10 became fully biased. Practically it doesn’t appear in

the unbiased branch list.

…

5. Parameters: HRl on 2 bits, HRg on 7 bits, => Unbiased

contexts: 9.668[%]

PC: 58 HRg: 1110111 HRl: 00 T: 1419 NT: 260 Bias: 0.845

6. Parameters: HRl on 2 bits, HRg on 8 bits, => Unbiased

contexts: 8.134[%]

PC: 58 HRg: 01110111 HRl: 00 T: 579 NT: 260 Bias: 0.690

PC: 58 HRg: 11110111 HRl: 00 T: 840 NT: 0 Bias: 1.000=>

The branch with the address PC: 58 in context HRg:
11110111 and HRl: 00 became fully biased. Practically it

doesn’t appear in the unbiased branch list.

Conclusion: As it can be observed, increasing the context

length, some branches in certain contexts became fully biased,

but a great percentage still remains unbiased.

Comparing the previous results it can be observed that as

longer (increase the history length) or richer (local history it is

added beside global history) became the context as smaller

became the unbiased branches percentage. From the 1
st
 case to

2nd one, the unbiased branches percentages decrease with

7.187% and it can be observed how the two unbiased branches

in small contexts are still unsolved. However, the branch with

the address PC: 58 in context HRg: 1111 became fully biased

and decrease the number of unbiased branches with 2520.

Practically it doesn’t appear in the unbiased branch list. In the

3
rd

 case (adding one bit of local history) the unbiased branches

percentage remains unchanged. In the 4
th

 local history is set on

2 bits and much more contexts became biased (the unbiased

branches percentage decreases with 8.14%). Although, there are

some contexts that remain unbiased (see above: PC: 35 HRg:

x101 HRl: x0 – where x could be 0 or 1).

Analyzing the code sequence it can be said that the results

regarding to unbiased branches are correct. It can be observed

that to reach conditional branch 58, the previously 3 branches

are every time Taken (return from permute function, call of

swap function and return from it – not necessarily correlated

with the branch 58). One reason for the larger percentage of

unbiased branches refers to the fact that the branches within the

global history length may not have correlation with the current

branch, or the relevant history might be too far away. If the

context would permit it could be seen a correlation between

branches situated at a large distance in the dynamic instruction

stream. Recurrence and function calls hide some branches that

are really correlated with the analyzed one. Also, the local

correlation reduces the noise included in global history. Similar

examples we found in tower benchmark that solves the Hanoi

towers problem.

The insufficiency of global correlation information is

remarked also in the case of programs or data structures, which

produce a variable number of history bits as the data changes

(data correlation). This occurs in the link lists or trees cases

where it is tested the address of an element (usually comparison

with 0) and then follow a recurrent call of the same function to

test the next element in the tree (left or right sub-tree). The same

situation it happen in the hash table cases having link lists to

solve the collisions. A possible solution could be to use data

values or structural information to keep the predictor more

synchronized with data. We tried such an approach in [7].

B. Predicting Unbiased Branches using State-of-the-art

Predictors

The prediction process supposes accessing the tables for

every instruction from traces and establishing the prediction

function of associated prediction automaton or perceptron

computed output. After branch’s resolution, it starts the

updating algorithm (every good prediction increase the

automatons state or perceptron weights, otherwise decreasing

the same parameters). The automatons are implemented as

saturating counters and, in the neural predictors’ case, the

threshold keeps from overtraining, permitting the perceptron to

adapt quickly at every changing behavior.

ABPS includes the following predictors implemented: GAg,

PAg, PAp, GShare and Perceptron. The two-level predictors

implemented (first 4) request as inputs parameters: number of

entries in prediction table, the history length (global / local).

Besides input parameters used by two-level predictors, the

neural predictors (Simple Perceptron and Fast Path-based

Perceptron) need some additional: threshold value used for

learning algorithm, number of bits for storing the weights. Each

predictor can predict all branches or only unbiased branches.

If the user selected the Perceptron predictor (Simple or Fast

Path-based), the simulation results consist in four important

metrics. The prediction accuracy is the number of correct

predictions divided to total number of dynamic branches. We

compute also a confidence metric that represents the total cases

when the prediction was correct and the perceptron didn’t need

to be trained (the magnitude of perceptron output was greater

than threshold) divided to the total number of correct

predictions. While the first two have impact on processor’s

performance, the next two metrics have direct influence on

transistors’ budget and integration area (the number of

perceptrons used in prediction process and respectively the

saturation degree of perceptrons). The saturation degree

represents the percentage of cases when the weights of

perceptrons can’t be increased / decreased because they are

saturated. If the last two metrics are quite low means that the

perceptrons are underused. The prediction accuracy and the

usage degree of prediction table are computed also in the case

of classical two-level predictors.

IV. SOFTWARE DESIGN OF ABPS SIMULATOR

The user diagram (Fig.1a) illustrates the general user

interaction process with ABPS. A generic user can mainly

interact with ABPS in two ways (not fully distinct):

• Default start -> the user starts a simulation using the

default input parameters.

• Custom start (Choose simulation type) -> the user

chooses:

1. The simulation type – detection or prediction;

2. The benchmarks (Stanford and/or SPEC 2000);

3. The values for the simulation parameters.

After the three steps presented above, the user can start the

simulation process. Both in the Default start and in the Custom

start cases, after the simulation process is ready, simulation

results are shown.

NOTES: Steps 1, 2, 3 can be executed in any order. Either of

steps 1 and 3 is not mandatory. If one of them is not executed,

default values are used. Step 2 (choosing the benchmarks) is

necessary the first time (initially no traces are selected for

simulation) for both user interaction types.

The activity diagram (Fig.1b) shows a general view for the

simulation process flow in ABPS:

• Initialization – all simulation parameters are set (traces,

simulation type: detection / prediction, detector /

predictor values);

• Starts simulation – the simulation begins after all the

inputs had been set. The simulation process consists

basically in processing each trace included (in a

multithreaded manner);

• Read trace – each trace is processed, branch after

branch. Each branch instruction is fed to the selected

detector / predictor. This is done until all branch

instructions (from the selected trace) are processed.

During this, results are accumulated.

• Processing results – after a trace had been processed,

the obtained results are processed in order to compute

certain metrics;

• Display results – the results are displayed and the

simulation process stops.

NOTE: At any time the simulation process can be aborted

from the GUI (Graphic User Interface).

Figure 1. UML Diagrams – User and Activity perspectives

Figure 2. Sequence Diagram

The sequence diagram (Fig.2) presents in detail how ABPS

performs the process of detecting unbiased branches. The

process starts in the GUI, where the detection parameters are

set. After this initialization, the user can trigger the detection

process, which will be managed by another thread (1: create,

st:SimulatorThread). In this way, the GUI will not block itself,

leaving the user with the ability to perform other tasks from

ABPS. The simulation thread will create and start a detection

thread (1.1: create, dt:DetectorThread). The detection thread

will manage all the detection process (1.1.1: Create1,

tr:TraceReader). When all the above initializations were

performed, the detection process actually starts (2:

startSimulation(), 2.1: run()): the trace used for simulation is

processed using the appropriate detector (see: 2.1.1 – 2.1.6).

Finally, the detection thread signals (by returning the results)

the simulation thread that the detection is done (2.2: Destruct3).

In the same manner, the simulation thread signals the GUI

thread (3:Destruct4), which will display the results.

NOTE: Although the above diagram doesn’t show, at any

time the detection process can be aborted from the GUI.

V. SIMULATION METHODOLOGY AND

EXPERIMENTAL RESULTS

We developed ABPS (Advanced Branch Prediction

Simulator) an original interactive graphical trace-driven

simulator [8]. We simulate eight C Stanford integer

benchmarks, designed by Professor John Hennessy (Stanford

University), to be computationally intensive and representative

of non - numeric code while at the same time being compact.

Also, we simulate all of the SPEC CPU2000 integer

benchmarks, and all of the SPEC CPU95 integer benchmarks

that are not duplicated in SPEC CPU2000, each benchmark

having 1 million dynamic branch instructions. All these

benchmarks cover a lot of applications ranging from

compression (text/image) to word processing, from compilers

and architectures to games enhanced with artificial intelligence,

etc. We choose to simulate different version of benchmarks

(Stanford and SPEC) in order to discover how these different

testing programs influence the neural branch predictors’ micro-

architectural features.

The ABPS simulator provides a wider variety of

configuration options. Thus, it can be determined how vary

prediction accuracy with input parameters (number of entries in

prediction tables, history length, number of bits for weights

representation, threshold value used for perceptron training,

etc). ABPS is written in Java and assures three of the features

specific to almost high-performance standard simulators: free

availability for use, extensibility and portability. Full inheritance

and polymorphism is used, allowing for ease of extension in the

future adding new functionalities.

Repeating the detection methodology for a length-ordered set

of contexts it could be observed how decreases the number of

unbiased branches from tested benchmarks. Figure 3 shows the

reduction in the number of unbiased branches varying the length

of prediction contexts from 8 to 32 bits. The percentage

reduction in the number of unbiased branches decreases from

25.12% to 9.26%. We consider that the last value is too high

and further investigations are required.

%Unbias = f(HrG)

25,12

17,4412,64
9,26

0
5

10
15
20
25
30
35
40
45
50
55
60

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rse

r
eo

n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip
2

tw
ol

f

A
ve

ra
ge

SPEC benchmarks

U
n

b
ia

se
d

 b
ra

n
ch

es
 [

%
]

HrG=8

HrG=16

HrG=24

HrG=32

Figure 3. Reducing the number of unbiased branches with increasing global

history register length

Figure 4 graphical illustrates the influence of global history

on prediction accuracy using a fast path-based perceptron

predictor. It is very clear that as longer became the global

history length as greater became the prediction accuracy on all

branches. Also, the prediction accuracy ascendant trend still

remains when the number of perceptrons increases. The best

prediction accuracy obtained with a fast path-based perceptron

predictor – 95.21%, is superior to that provided by Alpha

21264, but having a hardware budget of 8
th
 times smaller

(≈32Kbytes vs. ≈257Kbytes).

Ap = f(HrG)

94,03

92,81

95,21

94,56

91,50
92,00
92,50
93,00
93,50
94,00
94,50
95,00
95,50

100 200 1024

Number of perceptrons

P
re

d
ic

ti
o

n
 A

cc
u

ra
c
y

[%
]

HrG=8

HrG=16

HrG=24

HrG=32

Figure 4. The influence of global history on prediction accuracy using a fast

path-based perceptron

Despite of significant reduction of unbiased branches

percentages (in average 26.79%) on five of SPEC benchmarks

(gzip, vpr, parser, bzip2 and twolf) the prediction accuracy

varies asymptotically (under 1.30% in average) whether global

history length raises from 8 to 32 bits (see figure 5). We named

these SPEC testing programs as critical benchmarks. The

average prediction accuracy on these benchmarks is very low

(91.06% – see figure 5). When global history length is 32 bits

the unbiased branches percentage on the 5 critical benchmarks

is still high (in average 15.90%) and may be responsible for the

lower prediction accuracy. This is because the current amount

of prediction information is limited (global-correlations). The

use of such limited information means that unbiased branches

cannot be predicted to a high degree of accuracy. Consequently,

other information is required to predict branches which have

been classified as unbiased (local, path or sign condition).

Ap=f(HrG) using fast path-based perceptron

predictor with 1024 entries

89,88

91,05

85
87
89
91
93
95

gzip vpr

par
se

r

bzip
2

tw
olf

A
ve

ra
ge

SPEC critical benchmarks

P
re

d
ic

ti
o

n

A
c
cu

r
a

cy
 [

%
]

HrG=8

HrG=16

HrG=24

HrG=32

Figure 5. Prediction accuracy on SPEC critical benchmarks

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that the design of branch

predictors should consider the identification of unbiased

branches due to their negative impact on prediction accuracy.

Repeating the detection methodology for a length-ordered set of

contexts (varying the global history length from 8 to 32 bits) it

could be observed that the percentage of unbiased branches

decreases from 25.12% to 9.26% but still remains a quite

significant percentage of unbiased branches. Further, we have

demonstrated the insufficiency of global correlation

information. We have therefore shown that even state of the art

branch predictors are unable to accurately predict these

unbiased branches (the best prediction accuracy measured on all

branches using a fast path-based perceptron predictor is

95.21%). We therefore consider that the use of more prediction

contexts (some HLL code information) is required to further

improve prediction accuracies. In order to efficiently use such

information we consider it will be necessary to have a

significant amount of compiler support.

REFERENCES

[1] Yeh T., Patt Y., Alternative Implementations of Two-Level Adaptive
Branch Prediction, 19th Annual International Symposium on Computer
Architecture, 1992.

[2] Jiménez D., Lin C., Neural Methods for Dynamic Branch Prediction,
ACM Transactions on Computer Systems, Vol. 20, New York, USA,
November 2002.

[3] Jiménez D., Fast Path-Based Neural Branch Prediction, Proceedings of
the 36th Annual International Symposium on Microarchitecture,
December 2003.

[4] Jiménez D., Idealized Piecewise Linear Branch Prediction, Journal of
Instruction-Level Parallelism, Vol. 7, pp. 1-11, (2005).

[5] Srinivasan R., Frachtenberg E., Lubeck O., Pakin S., Cook J., Neuro-

PPM Branch Prediction, The 2nd Journal of Instruction-Level Parallelism
Championship Branch Prediction Competition (CBP-2), Orlando, Florida,
USA, pp. 30-35, (2006).

[6] Vintan L., Gellert A., Florea A., Oancea M., Egan C., Understanding
Prediction Limits through Unbiased Branches, Lecture Notes in
Computer Science, vol. 4186-0480, Springer-Verlag, ISSN 0302-9743,
Berlin Heidelberg, (2006), pp. 480-487.

[7] Gellert A., Florea A., Vintan M., Egan C. Vintan L., Unbiased Branches:
An Open Problem, The 12th Asia-Pacific Computer Systems Architecture
Conference (ACSAC 2007), Seoul, Korea, August 2007.

[8] Radu C., Calborean H., Crapciu A., Gellert A., Florea A. – An Interactive

Graphical Trace-Driven Simulator for Teaching Branch Prediction in
Computer Architecture, The 6th EUROSIM Congress on Modeling and
Simulation, 2007, Ljubljana, Slovenia.

