
Abstract — Support Vector Machine (SVM) is a powerful 
method of classification, based on kernels, working with large 
data sets. In almost all cases there are used two distinct 
parameters that can be modified for obtaining best results. 
One of these parameters is easy to infer but the second is 
usually used as being the number of features that are taken 
into consideration. This seems to be not a good idea for text 
classification because it was shown that for a great number of 
features the classification accuracy is quite poor. In this 
paper we propose a method to correlate those parameters in 
order to obtain better results and vary only one parameter. 
We also show that using this method leads in almost all cases 
to better results. We introduce two formulas to correlate the 
parameters for polynomial and Gaussian kernels. 
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I. INTRODUCTION 
ocuments are typically  represented as vectors of the 
features space. Each word in the vocabulary 

represents a dimension of the feature space. The number of 
occurrences of a word in a document represents the value 
of the corresponding component in the document’s vector. 
The native feature space consists of the unique terms that 
occur into the documents, which can be tens or hundreds 
of thousands of terms for even a moderate-sized text 
collection, being a major problem of text categorization.  

As a method for text classification we use Support 
Vector Machine technique, which was proved as being 
efficient for nonlinear separable input data. This is a 
relatively recent learning method based on kernels [1],[2]. 
We use this method both in features selection step and in 
the classification step. Also we studied the influence of the 
input data representation on kernel parameters correlation. 

In this paper we present a comparative study of different 
parameters for two types of kernels, polynomial and 
Gaussian, and different methods to correlate kernel’s 
parameters. In almost all articles where the SVM method 
is used, researchers used two parameters to infer the kernel 
but usually they modified only one of them. For the 
second parameter it is not explicitly specified the 
modification rule. Sometimes this parameter is chosen as 
the number of features. For some kinds of applications, 
when the number of features is not so large, this can be a 
good idea; but for text classification, when the number of 
features can be a great, this can lead to powerless results. 

The general process of classifying text data can be 
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considered as having four steps. In the first step is done 
feature extraction from the text file (text mining). In the 
second step the features are selected. The third step is the 
learning step (training). The last is the evaluation step, 
where the classification process is evaluated. 

In the first step, we have used text mining like an 
application of data mining techniques to extract the feature 
vectors that characterizes a document. Starting with a set 
of d documents and t terms (words belonging to the 
documents), we can model each document as a vector v in 
the t dimensional space ℝt (a feature vector that 
characterizes the document into the set of documents). 

In the second step we used SVM technique as a method 
of feature selection in order to reduce the features space 
dimension and to select the best features. In [3] SVM 
feature selection was proved to be the best one. For the 
input data we have used three types of representations: 
Binary representation, Nominal representation, and 
Cornell SMART. 

In the next step (classification), we have also used 
Support Vector Machine. A great advantage of this 
technique is that it can use large input sets. We 
implemented this classification method for two types of 
kernels: polynomial kernel and Gaussian kernel (Radial 
Basis Function - RBF). We tried to find a simplified form 
of the kernels, without reducing the performance, actually 
increasing it, using only one, more intuitive parameter.  

For multi-class classification we chose the well-known 
method “one class versus the rest” [4]. Thus, considering 
M classes, we repeated two class classification for each 
topic (the category where the document is classified) 
obtaining M decision functions. 

Section II contains prerequisites for the work that we 
present in this paper. In section III we present the frame 
and methodology used for our experiments. Section IV 
presents the main results of our experiments. Section V 
debates and concludes on the most important results 
obtained and proposes some further work. 

II. SUPPORT VECTOR MACHINE 
Support Vector Machine (SVM) is a classification 
technique based on the statistical learning theory [4],[5] 
that was applied with great success in many challenging 
non-linear classification problems and was used on large 
sets of data with big samples. 

The purpose of the algorithm is to find a hyperplane that 
optimally splits the training set (a practical idea can be 
found in [6]). This technique is based on two class 
classification. There are some methods used for 
classification in more that two classes. Looking at the two 
dimensional problem we actually want to find a line that 
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“best” separates points in the positive class from the points 
in the negative class. The hyperplane is characterized by a 
decision function like ( )bxxf += )(,sgn)( Φw , where 

w is the weight vector, orthogonal to the hyperplane, “b” is 
a scalar that represents the margin of the hyperplane, “x” is 
the current sample tested, “Φ(x)” is a function that 
transforms the input data into a higher dimensional feature 
space and ⋅⋅,  representing the dot product. Sgn is the 

signum function. If w has unit length, then <w, Φ(x)> is 
the length of Φ(x) along the direction of w. Generally w 
will be scaled by ||w||. The training part of the algorithm 
needs to find the normal vector “w” that leads to the 
largest “b” of the hyperplane. 

For training data which is non separable by a 
hyperplane in the input space, the idea of SVM is to map 
the training data into a higher-dimensional feature space 
via Φ, and construct a separating hyperplane with the 
maximum margin. This yields a non-linear decision 
boundary into the input space. By the use of a kernel 
function )(, xφw  it is possible to compute the 

separating hyperplane without explicitly carrying out the 
map into the feature space [4]. 

Everything was formulated in a dot product space. On 
the practical level, changes have to be made to perform the 
algorithm in a higher-dimensional feature space. Thus the 
new patterns Φ(xi) aren’t necessary to coincide with the 
input patterns. These patterns can equally well be the 
result of mapping the original input patterns xi into a 
higher dimensional feature space using function Φ. 
Maximizing the target function and evaluating the decision 
function involve the computation of dot products 

)(),( xx φφ  into a higher dimensional space. These 

expensive calculations are reduced significantly by using a 
positive definite kernel k, such that ',)',( xxxxk = . 

This substitution, which is referred sometimes as the 
kernel trick is used to extend hyperplane classification to 
nonlinear Support Vector Machines. The kernel trick can 
be applied since all feature vectors only occur in dot 
products. The weight vectors than becomes an expression 
in the feature space, and therefore Φ will be the function 
through which we represent the input vector in the new 
space. Thus it is obtained the decision function having the 
following form: 

 ( ) 



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iii bxxkyxf ,sgn)( α  (1) 

where iα represent the Lagrange multipliers and the 

samples ix  for which 0>iα  are called Support Vectors. 

III. EXPERIMENTAL FRAMEWORK 

A. The used dataset  
Our experiments are performed on the Reuters-2000 

collection [7], which have 984Mb of newspapers articles 
in a compressed format. Collection includes a total of 
806,791 documents, with news stories published by 

Reuters Press covering the period from 20.07.1996 
through 19.07.1997. The articles have 9822391 paragraphs 
and contain 11522874 sentences and more than two 
hundred million words. Documents are pre-classified 
according to 3 categories: by the Region (366 regions) the 
article refers to, by Industry Codes (870 industry codes) 
and by Topics proposed by Reuters (126 topics, 23 of them 
contain no articles). Due to the huge dimension of the 
database we will present here results obtained using a 
subset of data. From all documents we selected the 
documents for which the industry code value is equal to 
“System software”. We obtained 7083 files that are 
represented using 19038 features and 68 topics. We 
represent documents as vectors of words, applying a stop-
word filter (from a standard set of 510 stop-words) and 
extracting the steam of the word. From these 68 topics we 
have eliminated those topics that are poorly or excessively 
represented. Thus we eliminated those topics that contain 
less than 1% documents from all 7083 documents in the 
entire set. We also eliminated topics that contain more 
than 99% samples from the entire set, as being excessively 
represented. The elimination was necessary because with 
these topics we have the risk to use only a single decision 
function for classifying all documents ignoring the rest of 
the decision functions. After doing so we obtained 24 
different topics and 7053 documents that were splat 
randomly in training set (4702 samples) and evaluation set 
(2531 samples).  

B. Used kernel types 
The idea of the kernel is to compute the norm of the 

difference between two vectors in a higher dimensional 
space without representing those vectors in the new space. 
In practice we can see that by adding a scalar constant to 
the kernel we can get better classifying results. In this 
paper we tested a new idea to correlate this scalar with the 
dimension of the space where the data will be represented. 
We consider that those two parameters (the degree and the 
scalar) need to be correlated. 

For the polynomial kernel we change only the 
polynomial degree and for the Gaussian kernel we change 
only the constant C according to the new following 
formulas (x and x’ being the input vectors):  
Polynomial ( )dxxdxxk '2)',( ⋅+⋅=   (2) 

d being the only parameter that need to be modified and 
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where C being the only parameter that need to be modified 
and n being the number of elements greater than 0 from 
the input vectors that is automatically computed. 

C. Polynomial kernel parameter’s correlation  
Usually when learning with a polynomial kernel 

researchers use a kernel that looks like ( )db+′⋅ xx  

where d and b are independent parameters. “d” is the 
degree of the kernel and it is used as a parameter that helps 
mapping the input data into a higher dimensional features 
space. This is why this parameter is intuitive. The second 



parameter “b”, is not so easy to infer. In all studied 
articles, the researchers used it, but they don’t present a 
method for selecting it. We notice that if this parameter 
was eliminated (i.e., chosen zero) the quality of results can 
be poor. It is logically that we need to correlate d and b 
parameters because the offset b needs to be modified as 
the dimension of the space modifies. Due to this, based on 
running laborious classification simulations presented in 
this paper, we suggest using “b=2*d” in our application. 

D. Gaussian kernel parameter’s correlation  
Also for the Gaussian kernel we modified the standard 

kernel used by research community. Usually the kernel 
looks like )/'exp()',( Cxxxxk −−= , where the 

parameter C is a number that represents the dimension of 
the training set (and usually this is a very big number for 
text classification). We introduce the parameter n that is 
multiplied by parameter C and is a value that represents 
the number of distinct features that occur into the current 
two input vectors (x and x’), having weights greater than 0. 
We keep the constant C that becomes a small number 
(usually obtain best results between 1 and 2). As far as we 
know, we are the first authors proposing a correlation 
between these two parameters for both polynomial and 
Gaussian kernels. 

E. Representing the input data 
Because there are many ways to define the feature-

weight, we represent the input data in different formats, 
and we try to analyze their influence on classification 
accuracy. We take in consideration three formats for 
representing data [8]. 

Binary representation – in the input vector we store “0” 
if the word doesn’t occur in the document and “1” if it 
occurs without considering the number of occurrences. 
The weight can only be 0 or 1.  

Nominal representation – in the input vector we 
compute the value of the weight using the formula:  
 

),(max
),(),(

ττ dn
tdntdTF = ,  (4) 

where n(d, t) is the number of times that term t occurs in 
document d, and the denominator represents the value of 
term that occurs the most in document d, and TF(d,t) is the 
term frequency. 

Cornell SMART representation – in the input vector we 
compute the value of the weight using the formula: 
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where n(d,t) represent number of times term t occurs in 
document d. In this case the weight can take value 0 if the 
word does not exist into the document and, greater then 1 
if it exists. The scaled value creates a gap between the 
values for no word and the value of one appearance.  

IV. SIMULATION RESULTS 
For each test we train the algorithm using the training 

files. After that we test the decision functions obtained 
using the test files. We classify the document into the class 
for which is obtained the greater absolute value. The result 

(class) is compared with the results (classes) that were 
proposed by Reuters. We obtain thus the accuracy of 
classification for all 24 classes. We’ll present all tests 
using only 1309 features obtained from all 19038 features, 
using a feature selection method based also to Support 
Vector Machine [3]. 

A. Results for polynomial kernel  
In order to improve the classification accuracy using 

polynomial kernel our idea was to correlate the bias of the 
kernel with the degree of the kernel (Section III.C). In this 
idea we develop tests for four degrees of the kernel, 
considering for each of them 16 distinct values of the bias 
and, respectively, for each input data representation. Thus 
for each degree of the kernel we vary the value of the bias 
from 0 to the number of the features.  

In Figure 1 we present results obtained with polynomial 
kernel and Nominal data representation by varying the 
degree of the kernel and the bias. In “Our choice” entry we 
put only the values that were obtained using our formula 
that correlates the polynomial kernel’s parameters. As it 
can be observed, using our correlation idea (formula 2) 
assures that in almost all cases there are obtained the best 
results. In this case, only for degree 4 the best value was 
obtained for bias equal with 2 and we obtain a value with 
0.21% smaller than the best results (84.56% in comparison 
with the best obtained 84.77%).  

Effective values of the accuracy obtained using Cornell 
Smart data representation, for each kernel degree and for 
each bias, are presented in Table 1. For each degree there 
are multiple bias values involving best results and our 
proposed formula assures to hit these values in almost all 
cases. Also an interesting observation is that for kernel 
degree = 1, we usually obtained the same classification 
accuracy for all bias values, with only 0.51% smaller that 
the best value. As it can be observed from Figure 1, with 
no bias we obtain the worst results. The same tests were 
developed also for Binary data representation and we have 
obtained usually the same results. 

B. Results for Gaussian kernel 
For the Gaussian kernel we modified the usually used 

constant C that represent the number of features, with a 
product between a small number (noted also by C in our 
formula 3) and a number that is automatically computed 
(Section III.D). We made tests with four C distinct values. 
For each of these values, we vary n from 1 to 1309 (total 
number of the features used). Because our proposed value 
for n is automatically computed, this number can not be 
specified by the command line, so that for each value of 
constant C we specified a value called “auto” (in Figure 2) 
that means the value automatically computed using our 
formula. 

We made tests only for Binary and Cornell Smart 
representations of the input data. Into Gaussian kernel we 
fill in a parameter that represents the number of elements 
greater then zero (parameter “n” from equation 3). 
Nominal representation (equation 4) represents all weight 
values between 0 and 1. When parameter “n” is used, all 
the weights become very close to zero involving very poor 



classification accuracies (for example, due to its almost 
zero weight, a certain word really belonging to the 
document, might be considered as not belonging to that 
document). So we don’t present here the results obtained 
using Nominal representation and Gaussian kernel. 

In Figure 2 we present results obtained for Binary data 
representation. When we use our idea to compute “n”, we 
obtained the best results. Also better results were obtained 
when the value of n is between 50 and 100. This occurs 
because usually each document uses a small number of 
features (on average between 50 and 100) in comparison 
with features from entire set of documents. When n is 
equal with the total number of features (usually used into 
the literature) the accuracy decrees, in average for all 
testes, with more than 10% in comparison with using an 
automatically computed value for n. It can also be 
observed that when the value of parameter n increases the 
accuracy decrees substantially. The same tests were also 
made using Cornell Smart data representation, obtaining 
the same tendency and usually accuracy with 1% better 

than in Binary case.  
In contrast with polynomial kernel, in Gaussian kernel 

case we obtained best results only with our proposed 
formula to compute the parameter “n”. 

C. Kernel’s influence   
In this section we present the influence of correlating 

kernel’s parameters on classification accuracy using other 
implementation of SVM. In order to do this we make a 
short comparison between the results that we obtained 
with usually used implementation of SVM, called LibSvm 
[9], and our implemented application called UseSvm [10]. 
LibSvm uses “one versus the one” method for multiclass 
classification. Our developed UseSvm program uses “one 
versus the rest” method, as we already mentioned. 
Reuter’s database, used in our tests, contains strongly 
overlapped data and in this case the first method usually 
obtains powerless results. 

We have used also sets with 1309 features, obtained 
using SVM feature selection method. In order to fairly 
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Figure 1 – Influence of bias for Nominal representation of the data 
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Figure 2 – Influence of value for “n” for Gaussian kernel and Binary data representation 



compare LibSvm with our UseSvm, we eliminated, when 
possible, Reuters overlapped data (for working only with 
non-overlapped classes, as far as is possible; formally, 

jieachforji ji ≠∅=∩=∀ CC,13,1, ). We choose for 

each sample only first class that was proposed by Reuters. 
We also eliminated classes that are poorly or excessively 
represented. We obtained only 13 classes randomly split in 
two sets and used for training and testing for both LibSvm 
and UseSvm. Results obtained by LibSvm are poor in 
comparison with the results of our application, because, 
despite our efforts, the data are however slightly 
overlapped. In Figure 3 and Figure 4 we present results 
obtained for the polynomial kernel and the Gaussian 
kernel with nominal data representation for both 
applications. We are using equivalent parameters for both 
applications. As LibSvm has more parameters than 
UseSvm, we have left on default value for the parameters 
that appear only in LibSvm. 

As we already specified, for polynomial kernel our 
suggestion was to make “b=2*d” (see Section III.C). We 
present results using LibSvm with b=0 (default value) 
respectively with b=2*d (specified explicitly by command 
line) comparing with our UseSvm program. 

As it can be observed from Figure 3, our UseSvm 
program obtains far better results than the well-known 
LibSvm (with an average gain of 18.82% better). By 
comparing LibSvm with the default bias with LibSvm with 
modified bias (according to our formula 2), we noticed 
that the modified bias leads to better results (with an 
average gain of 24.26% better). The average gain is 
computed as average obtained by LibSvm with the default 
bias divided by the average obtained by LibSvm with 
modified bias. For degree 1 were obtained similar results 
because values of default bias and value computed using 
our formula are quite equal. 

For the Gaussian kernel simulations, presented in Figure 
4, our suggestion was to multiply the constant C with a 
parameter n (like we already explained in Section III.D). It 

is difficult to give this parameter from the LibSvm’s 
command line because n is computed dynamically and 
LibSvm have only one parameter that can be modified, 
called gamma. More precisely, LibSvm uses 

ngamma 1=  only when gamma is default (n means the 
average of number of attributes in the input data). For 
LibSvm we have used gamma as C1 . For 
LibSvm+”gamma” we considered “gamma” to be equal to 

nC2 , where n is the number of features. The single case 
of equivalence between these two programs (LibSvm and 
UseSvm) is obtained for the default value of gamma in 
LibSvm and respectively for C=1 in UseSvm. This case is 
presented separately as “def” in Figure 4. 

As it can be observed, using our idea to modify the 
Gaussian kernel the results obtained using LibSvm are 
better in comparison with results obtained using LibSvm 
with standard kernel (with an average gain of 28.44%). 
Our UseSvm program obtains far better results than the 
well-known LibSvm (with an average gain of 25.57% 
better). For the default parameter of LibSvm our 
application also has obtained better results (76.88% in 
comparison with 69.97% for LibSvm). 

V. CONCLUSIONS AND FURTHER WORK 
In this paper, we have proposed a new method to better 

correlate kernel’s parameters. The method correlates the 
degree of the Polynomial kernel with the bias, respectively 
correlates the constant from the Gaussian kernel with a 
value that represents the number of distinct features that 
occurs into the currently used vectors and having weights 
greater than 0. In the polynomial kernel case there are 
more values for which we obtain the best results but our 
proposed formula assures to hit in almost all cases the best 
results without having to make more tests to find the good 
parameter for the bias. For Gaussian kernel our proposed 
formulas assures to obtain the best results. Also we 
showed that for text classification problems, using bias or 
parameter C equal to the number of features, as it is 
usually used in the literature, is not a good idea. Using our 
proposed formulas there is obtained in average with 3% 
better results for polynomial kernel and with 15% better 
results for Gaussian kernel. 

Also we tested our idea using other SVM 
implementation, usually used into the literature and called 
LibSvm, and we obtain the same tendency. We obtained 
an average accuracy classification gain of 24.26% for 
polynomial kernel, respectively 28.44% for Gaussian 
kernel. As far as we know, we are the first authors 
proposing a correlation between these two parameters for 
both polynomial and Gaussian kernels.  

Work is ongoing to classify larger text data sets (all 
Reuters database). In this idea we want to develop a pre-
classification of all documents, obtaining fewer samples 
(using simple algorithms like Linear Vector Quantization 
or Self Organizing Maps). After that we’ll use the obtained 
samples as entry vectors for the already developed features 
selection and classification methods.  

Because almost all available data from a real world are 

Table 1: Influence of bias for CORNELL 
SMART data representation. 

Bias D=1 D=2 D=3 Choice 
0 81.84 86.69 82.35  
1 81.84 86.64 83.37  
2 82.22 86.81 84.01 82.22 
3 82.22 86.56 84.77  
4 82.22 86.81 65.12 86.81 
5 82.01 86.47 85.54  
6 81.71 86.60 86.39 86.39 
7 81.71 86.43 86.18  
8 82.09 86.43 86.47  
9 81.84 86.18 86.47  

10 81.80 85.96 86.26  
50 81.92 84.73 84.90  
100 82.22 83.71 82.82  
500 82.05 81.88 8.34  

1000 82.09 80.94 53.51  
1309 82.09 80.77 50.40  

 



in fact unlabeled data, we will try to combine classifying 
method with a clustering method, also based on SVM, in 
order to use labeled and unlabeled data into a hybrid 
classification algorithm. An interesting natural extension 
of our algorithm might be an adaptation for a Web mining 
application, in order to extract and categorized online 
news. 
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Figure 3 Influence of correlation between parameters from polynomial kernel 

 

Influence of the type of modified - Gaussian Kernel 

35
40
45
50
55
60
65
70
75
80
85

0.03 0.1 1 1.3 1.8 2.1 def

Kernel degree

A
cc

ur
ac

y(
%

)

LibSvm

LibSVM +
"gamma"

UseSVM

 
Figure 4 Influence of modified about Gaussian Kernel 


