
Abstract — Support Vector Machine (SVM) is a powerful
method of classification, based on kernels, working with large
data sets. In almost all cases there are used two distinct
parameters that can be modified for obtaining best results.
One of these parameters is easy to infer but the second is
usually used as being the number of features that are taken
into consideration. This seems to be not a good idea for text
classification because it was shown that for a great number of
features the classification accuracy is quite poor. In this
paper we propose a method to correlate those parameters in
order to obtain better results and vary only one parameter.
We also show that using this method leads in almost all cases
to better results. We introduce two formulas to correlate the
parameters for polynomial and Gaussian kernels.

Keywords — Learning with Kernels, Support Vector

Machine, and Text Classification

I. INTRODUCTION
ocuments are typically represented as vectors of the
features space. Each word in the vocabulary

represents a dimension of the feature space. The number of
occurrences of a word in a document represents the value
of the corresponding component in the document’s vector.
The native feature space consists of the unique terms that
occur into the documents, which can be tens or hundreds
of thousands of terms for even a moderate-sized text
collection, being a major problem of text categorization.

As a method for text classification we use Support
Vector Machine technique, which was proved as being
efficient for nonlinear separable input data. This is a
relatively recent learning method based on kernels [1],[2].
We use this method both in features selection step and in
the classification step. Also we studied the influence of the
input data representation on kernel parameters correlation.

In this paper we present a comparative study of different
parameters for two types of kernels, polynomial and
Gaussian, and different methods to correlate kernel’s
parameters. In almost all articles where the SVM method
is used, researchers used two parameters to infer the kernel
but usually they modified only one of them. For the
second parameter it is not explicitly specified the
modification rule. Sometimes this parameter is chosen as
the number of features. For some kinds of applications,
when the number of features is not so large, this can be a
good idea; but for text classification, when the number of
features can be a great, this can lead to powerless results.

The general process of classifying text data can be

D. Morariu is with the Faculty of Engineering, “Lucian Blaga”
University of Sibiu, Romania (phone: 40/740/092202; e-mail:
daniel.morariu@ulbsibiu.ro).

L. Vintan is with the Faculty of Engineering, “Lucian Blaga”
University of Sibiu, Romania (phone: 40/745/927450; e-mail
lucian.vintan@ublsibiu.ro).

considered as having four steps. In the first step is done
feature extraction from the text file (text mining). In the
second step the features are selected. The third step is the
learning step (training). The last is the evaluation step,
where the classification process is evaluated.

In the first step, we have used text mining like an
application of data mining techniques to extract the feature
vectors that characterizes a document. Starting with a set
of d documents and t terms (words belonging to the
documents), we can model each document as a vector v in
the t dimensional space ℝt (a feature vector that
characterizes the document into the set of documents).

In the second step we used SVM technique as a method
of feature selection in order to reduce the features space
dimension and to select the best features. In [3] SVM
feature selection was proved to be the best one. For the
input data we have used three types of representations:
Binary representation, Nominal representation, and
Cornell SMART.

In the next step (classification), we have also used
Support Vector Machine. A great advantage of this
technique is that it can use large input sets. We
implemented this classification method for two types of
kernels: polynomial kernel and Gaussian kernel (Radial
Basis Function - RBF). We tried to find a simplified form
of the kernels, without reducing the performance, actually
increasing it, using only one, more intuitive parameter.

For multi-class classification we chose the well-known
method “one class versus the rest” [4]. Thus, considering
M classes, we repeated two class classification for each
topic (the category where the document is classified)
obtaining M decision functions.

Section II contains prerequisites for the work that we
present in this paper. In section III we present the frame
and methodology used for our experiments. Section IV
presents the main results of our experiments. Section V
debates and concludes on the most important results
obtained and proposes some further work.

II. SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) is a classification
technique based on the statistical learning theory [4],[5]
that was applied with great success in many challenging
non-linear classification problems and was used on large
sets of data with big samples.

The purpose of the algorithm is to find a hyperplane that
optimally splits the training set (a practical idea can be
found in [6]). This technique is based on two class
classification. There are some methods used for
classification in more that two classes. Looking at the two
dimensional problem we actually want to find a line that

A Better Correlation of the SVM
Kernel’s Parameters

Daniel I. Morariu, Lucian N. Vintan

D

“best” separates points in the positive class from the points
in the negative class. The hyperplane is characterized by a
decision function like ()bxxf +=)(,sgn)(Φw , where

w is the weight vector, orthogonal to the hyperplane, “b” is
a scalar that represents the margin of the hyperplane, “x” is
the current sample tested, “Φ(x)” is a function that
transforms the input data into a higher dimensional feature
space and ⋅⋅, representing the dot product. Sgn is the

signum function. If w has unit length, then <w, Φ(x)> is
the length of Φ(x) along the direction of w. Generally w
will be scaled by ||w||. The training part of the algorithm
needs to find the normal vector “w” that leads to the
largest “b” of the hyperplane.

For training data which is non separable by a
hyperplane in the input space, the idea of SVM is to map
the training data into a higher-dimensional feature space
via Φ, and construct a separating hyperplane with the
maximum margin. This yields a non-linear decision
boundary into the input space. By the use of a kernel
function)(, xφw it is possible to compute the

separating hyperplane without explicitly carrying out the
map into the feature space [4].

Everything was formulated in a dot product space. On
the practical level, changes have to be made to perform the
algorithm in a higher-dimensional feature space. Thus the
new patterns Φ(xi) aren’t necessary to coincide with the
input patterns. These patterns can equally well be the
result of mapping the original input patterns xi into a
higher dimensional feature space using function Φ.
Maximizing the target function and evaluating the decision
function involve the computation of dot products

)(),(xx φφ into a higher dimensional space. These

expensive calculations are reduced significantly by using a
positive definite kernel k, such that ',)',(xxxxk = .

This substitution, which is referred sometimes as the
kernel trick is used to extend hyperplane classification to
nonlinear Support Vector Machines. The kernel trick can
be applied since all feature vectors only occur in dot
products. The weight vectors than becomes an expression
in the feature space, and therefore Φ will be the function
through which we represent the input vector in the new
space. Thus it is obtained the decision function having the
following form:

 () 







+= ∑

ℜ∈i
iii bxxkyxf ,sgn)(α (1)

where iα represent the Lagrange multipliers and the

samples ix for which 0>iα are called Support Vectors.

III. EXPERIMENTAL FRAMEWORK

A. The used dataset
Our experiments are performed on the Reuters-2000

collection [7], which have 984Mb of newspapers articles
in a compressed format. Collection includes a total of
806,791 documents, with news stories published by

Reuters Press covering the period from 20.07.1996
through 19.07.1997. The articles have 9822391 paragraphs
and contain 11522874 sentences and more than two
hundred million words. Documents are pre-classified
according to 3 categories: by the Region (366 regions) the
article refers to, by Industry Codes (870 industry codes)
and by Topics proposed by Reuters (126 topics, 23 of them
contain no articles). Due to the huge dimension of the
database we will present here results obtained using a
subset of data. From all documents we selected the
documents for which the industry code value is equal to
“System software”. We obtained 7083 files that are
represented using 19038 features and 68 topics. We
represent documents as vectors of words, applying a stop-
word filter (from a standard set of 510 stop-words) and
extracting the steam of the word. From these 68 topics we
have eliminated those topics that are poorly or excessively
represented. Thus we eliminated those topics that contain
less than 1% documents from all 7083 documents in the
entire set. We also eliminated topics that contain more
than 99% samples from the entire set, as being excessively
represented. The elimination was necessary because with
these topics we have the risk to use only a single decision
function for classifying all documents ignoring the rest of
the decision functions. After doing so we obtained 24
different topics and 7053 documents that were splat
randomly in training set (4702 samples) and evaluation set
(2531 samples).

B. Used kernel types
The idea of the kernel is to compute the norm of the

difference between two vectors in a higher dimensional
space without representing those vectors in the new space.
In practice we can see that by adding a scalar constant to
the kernel we can get better classifying results. In this
paper we tested a new idea to correlate this scalar with the
dimension of the space where the data will be represented.
We consider that those two parameters (the degree and the
scalar) need to be correlated.

For the polynomial kernel we change only the
polynomial degree and for the Gaussian kernel we change
only the constant C according to the new following
formulas (x and x’ being the input vectors):
Polynomial ()dxxdxxk '2)',(⋅+⋅= (2)

d being the only parameter that need to be modified and

Gaussian














⋅
−

−=
Cn
xx

xxk
2'

exp)',((3)

where C being the only parameter that need to be modified
and n being the number of elements greater than 0 from
the input vectors that is automatically computed.

C. Polynomial kernel parameter’s correlation
Usually when learning with a polynomial kernel

researchers use a kernel that looks like ()db+′⋅ xx

where d and b are independent parameters. “d” is the
degree of the kernel and it is used as a parameter that helps
mapping the input data into a higher dimensional features
space. This is why this parameter is intuitive. The second

parameter “b”, is not so easy to infer. In all studied
articles, the researchers used it, but they don’t present a
method for selecting it. We notice that if this parameter
was eliminated (i.e., chosen zero) the quality of results can
be poor. It is logically that we need to correlate d and b
parameters because the offset b needs to be modified as
the dimension of the space modifies. Due to this, based on
running laborious classification simulations presented in
this paper, we suggest using “b=2*d” in our application.

D. Gaussian kernel parameter’s correlation
Also for the Gaussian kernel we modified the standard

kernel used by research community. Usually the kernel
looks like)/'exp()',(Cxxxxk −−= , where the

parameter C is a number that represents the dimension of
the training set (and usually this is a very big number for
text classification). We introduce the parameter n that is
multiplied by parameter C and is a value that represents
the number of distinct features that occur into the current
two input vectors (x and x’), having weights greater than 0.
We keep the constant C that becomes a small number
(usually obtain best results between 1 and 2). As far as we
know, we are the first authors proposing a correlation
between these two parameters for both polynomial and
Gaussian kernels.

E. Representing the input data
Because there are many ways to define the feature-

weight, we represent the input data in different formats,
and we try to analyze their influence on classification
accuracy. We take in consideration three formats for
representing data [8].

Binary representation – in the input vector we store “0”
if the word doesn’t occur in the document and “1” if it
occurs without considering the number of occurrences.
The weight can only be 0 or 1.

Nominal representation – in the input vector we
compute the value of the weight using the formula:

),(max
),(),(

ττ dn
tdntdTF = , (4)

where n(d, t) is the number of times that term t occurs in
document d, and the denominator represents the value of
term that occurs the most in document d, and TF(d,t) is the
term frequency.

Cornell SMART representation – in the input vector we
compute the value of the weight using the formula:





++
=

=
otherwisetdn

tdnif
tdTF

))),(log(1log(1
0),(0

),((5)

where n(d,t) represent number of times term t occurs in
document d. In this case the weight can take value 0 if the
word does not exist into the document and, greater then 1
if it exists. The scaled value creates a gap between the
values for no word and the value of one appearance.

IV. SIMULATION RESULTS
For each test we train the algorithm using the training

files. After that we test the decision functions obtained
using the test files. We classify the document into the class
for which is obtained the greater absolute value. The result

(class) is compared with the results (classes) that were
proposed by Reuters. We obtain thus the accuracy of
classification for all 24 classes. We’ll present all tests
using only 1309 features obtained from all 19038 features,
using a feature selection method based also to Support
Vector Machine [3].

A. Results for polynomial kernel
In order to improve the classification accuracy using

polynomial kernel our idea was to correlate the bias of the
kernel with the degree of the kernel (Section III.C). In this
idea we develop tests for four degrees of the kernel,
considering for each of them 16 distinct values of the bias
and, respectively, for each input data representation. Thus
for each degree of the kernel we vary the value of the bias
from 0 to the number of the features.

In Figure 1 we present results obtained with polynomial
kernel and Nominal data representation by varying the
degree of the kernel and the bias. In “Our choice” entry we
put only the values that were obtained using our formula
that correlates the polynomial kernel’s parameters. As it
can be observed, using our correlation idea (formula 2)
assures that in almost all cases there are obtained the best
results. In this case, only for degree 4 the best value was
obtained for bias equal with 2 and we obtain a value with
0.21% smaller than the best results (84.56% in comparison
with the best obtained 84.77%).

Effective values of the accuracy obtained using Cornell
Smart data representation, for each kernel degree and for
each bias, are presented in Table 1. For each degree there
are multiple bias values involving best results and our
proposed formula assures to hit these values in almost all
cases. Also an interesting observation is that for kernel
degree = 1, we usually obtained the same classification
accuracy for all bias values, with only 0.51% smaller that
the best value. As it can be observed from Figure 1, with
no bias we obtain the worst results. The same tests were
developed also for Binary data representation and we have
obtained usually the same results.

B. Results for Gaussian kernel
For the Gaussian kernel we modified the usually used

constant C that represent the number of features, with a
product between a small number (noted also by C in our
formula 3) and a number that is automatically computed
(Section III.D). We made tests with four C distinct values.
For each of these values, we vary n from 1 to 1309 (total
number of the features used). Because our proposed value
for n is automatically computed, this number can not be
specified by the command line, so that for each value of
constant C we specified a value called “auto” (in Figure 2)
that means the value automatically computed using our
formula.

We made tests only for Binary and Cornell Smart
representations of the input data. Into Gaussian kernel we
fill in a parameter that represents the number of elements
greater then zero (parameter “n” from equation 3).
Nominal representation (equation 4) represents all weight
values between 0 and 1. When parameter “n” is used, all
the weights become very close to zero involving very poor

classification accuracies (for example, due to its almost
zero weight, a certain word really belonging to the
document, might be considered as not belonging to that
document). So we don’t present here the results obtained
using Nominal representation and Gaussian kernel.

In Figure 2 we present results obtained for Binary data
representation. When we use our idea to compute “n”, we
obtained the best results. Also better results were obtained
when the value of n is between 50 and 100. This occurs
because usually each document uses a small number of
features (on average between 50 and 100) in comparison
with features from entire set of documents. When n is
equal with the total number of features (usually used into
the literature) the accuracy decrees, in average for all
testes, with more than 10% in comparison with using an
automatically computed value for n. It can also be
observed that when the value of parameter n increases the
accuracy decrees substantially. The same tests were also
made using Cornell Smart data representation, obtaining
the same tendency and usually accuracy with 1% better

than in Binary case.
In contrast with polynomial kernel, in Gaussian kernel

case we obtained best results only with our proposed
formula to compute the parameter “n”.

C. Kernel’s influence
In this section we present the influence of correlating

kernel’s parameters on classification accuracy using other
implementation of SVM. In order to do this we make a
short comparison between the results that we obtained
with usually used implementation of SVM, called LibSvm
[9], and our implemented application called UseSvm [10].
LibSvm uses “one versus the one” method for multiclass
classification. Our developed UseSvm program uses “one
versus the rest” method, as we already mentioned.
Reuter’s database, used in our tests, contains strongly
overlapped data and in this case the first method usually
obtains powerless results.

We have used also sets with 1309 features, obtained
using SVM feature selection method. In order to fairly

Influence of the bias

65

70

75

80

85

90

0 1 2 3 4 5 6 7 8 9 10 50 10
0

50
0

10
00

13
09

Values of the bias

A
cc

ur
ac

y
(%

)

d=1

d=2

d=3

d=4

Our
Choice

Figure 1 – Influence of bias for Nominal representation of the data

Influence of n

50
55
60
65
70
75
80
85
90

1 10 50 100 500 654 1000 1309 auto

Values of parameter n

A
cc

ur
ac

y
(%

)

C=1.0
C=1.3
C=1.8
C=2.1

Figure 2 – Influence of value for “n” for Gaussian kernel and Binary data representation

compare LibSvm with our UseSvm, we eliminated, when
possible, Reuters overlapped data (for working only with
non-overlapped classes, as far as is possible; formally,

jieachforji ji ≠∅=∩=∀ CC,13,1,). We choose for

each sample only first class that was proposed by Reuters.
We also eliminated classes that are poorly or excessively
represented. We obtained only 13 classes randomly split in
two sets and used for training and testing for both LibSvm
and UseSvm. Results obtained by LibSvm are poor in
comparison with the results of our application, because,
despite our efforts, the data are however slightly
overlapped. In Figure 3 and Figure 4 we present results
obtained for the polynomial kernel and the Gaussian
kernel with nominal data representation for both
applications. We are using equivalent parameters for both
applications. As LibSvm has more parameters than
UseSvm, we have left on default value for the parameters
that appear only in LibSvm.

As we already specified, for polynomial kernel our
suggestion was to make “b=2*d” (see Section III.C). We
present results using LibSvm with b=0 (default value)
respectively with b=2*d (specified explicitly by command
line) comparing with our UseSvm program.

As it can be observed from Figure 3, our UseSvm
program obtains far better results than the well-known
LibSvm (with an average gain of 18.82% better). By
comparing LibSvm with the default bias with LibSvm with
modified bias (according to our formula 2), we noticed
that the modified bias leads to better results (with an
average gain of 24.26% better). The average gain is
computed as average obtained by LibSvm with the default
bias divided by the average obtained by LibSvm with
modified bias. For degree 1 were obtained similar results
because values of default bias and value computed using
our formula are quite equal.

For the Gaussian kernel simulations, presented in Figure
4, our suggestion was to multiply the constant C with a
parameter n (like we already explained in Section III.D). It

is difficult to give this parameter from the LibSvm’s
command line because n is computed dynamically and
LibSvm have only one parameter that can be modified,
called gamma. More precisely, LibSvm uses

ngamma 1= only when gamma is default (n means the
average of number of attributes in the input data). For
LibSvm we have used gamma as C1 . For
LibSvm+”gamma” we considered “gamma” to be equal to

nC2 , where n is the number of features. The single case
of equivalence between these two programs (LibSvm and
UseSvm) is obtained for the default value of gamma in
LibSvm and respectively for C=1 in UseSvm. This case is
presented separately as “def” in Figure 4.

As it can be observed, using our idea to modify the
Gaussian kernel the results obtained using LibSvm are
better in comparison with results obtained using LibSvm
with standard kernel (with an average gain of 28.44%).
Our UseSvm program obtains far better results than the
well-known LibSvm (with an average gain of 25.57%
better). For the default parameter of LibSvm our
application also has obtained better results (76.88% in
comparison with 69.97% for LibSvm).

V. CONCLUSIONS AND FURTHER WORK
In this paper, we have proposed a new method to better

correlate kernel’s parameters. The method correlates the
degree of the Polynomial kernel with the bias, respectively
correlates the constant from the Gaussian kernel with a
value that represents the number of distinct features that
occurs into the currently used vectors and having weights
greater than 0. In the polynomial kernel case there are
more values for which we obtain the best results but our
proposed formula assures to hit in almost all cases the best
results without having to make more tests to find the good
parameter for the bias. For Gaussian kernel our proposed
formulas assures to obtain the best results. Also we
showed that for text classification problems, using bias or
parameter C equal to the number of features, as it is
usually used in the literature, is not a good idea. Using our
proposed formulas there is obtained in average with 3%
better results for polynomial kernel and with 15% better
results for Gaussian kernel.

Also we tested our idea using other SVM
implementation, usually used into the literature and called
LibSvm, and we obtain the same tendency. We obtained
an average accuracy classification gain of 24.26% for
polynomial kernel, respectively 28.44% for Gaussian
kernel. As far as we know, we are the first authors
proposing a correlation between these two parameters for
both polynomial and Gaussian kernels.

Work is ongoing to classify larger text data sets (all
Reuters database). In this idea we want to develop a pre-
classification of all documents, obtaining fewer samples
(using simple algorithms like Linear Vector Quantization
or Self Organizing Maps). After that we’ll use the obtained
samples as entry vectors for the already developed features
selection and classification methods.

Because almost all available data from a real world are

Table 1: Influence of bias for CORNELL
SMART data representation.

Bias D=1 D=2 D=3 Choice
0 81.84 86.69 82.35
1 81.84 86.64 83.37
2 82.22 86.81 84.01 82.22
3 82.22 86.56 84.77
4 82.22 86.81 65.12 86.81
5 82.01 86.47 85.54
6 81.71 86.60 86.39 86.39
7 81.71 86.43 86.18
8 82.09 86.43 86.47
9 81.84 86.18 86.47

10 81.80 85.96 86.26
50 81.92 84.73 84.90
100 82.22 83.71 82.82
500 82.05 81.88 8.34

1000 82.09 80.94 53.51
1309 82.09 80.77 50.40

in fact unlabeled data, we will try to combine classifying
method with a clustering method, also based on SVM, in
order to use labeled and unlabeled data into a hybrid
classification algorithm. An interesting natural extension
of our algorithm might be an adaptation for a Web mining
application, in order to extract and categorized online
news.

ACKNOWLEDGMENT
 We would like to thank to SIEMENS AG, CT IC

MUNCHEN, Germany, especially to Mr. Vice-President
Dr. H. C. Hartmut RAFFLER, for his generous and
various support, both professional and material, that he has
provided in developing this work.

REFERENCES
[1] Vapnik V., The nature of Statistical learning Theory. Springer,

New York, 1995
[2] Platt J., Fast training of support vector machines using sequential

minimal optimization. In B. Scholkopf, C. J. C. Burges, and A. J.
Smola, editors, Advances in Kernel Methods – Support Vector
Learning, pages 185-208, Cambridge, MA, 1999, MIT Press

[3] Morariu D., Vintan L., Tresp V., A comparative study of features
selection methods for SVM Classification, submitted to 17th

European Conference on Machine Learning (ECML2006), Berlin,
September 2006

[4] Schoslkopf B., Smola A., Learning with Kernels, Support Vector
Machines, MIT Press, London, 2002

[5] Nello C., Swawe-Taylor J., An introduction to Support Vector
Machines, Cambridge University Press, 2000

[6] Chih-Wei Hsu, Chih-Chang Chang and Chih-Jen Lin, A Practical
Guide to Support Vector Classification, Department of Computer
Science and Information Engineering National Taiwan University,
2003 (Available at http://www.csie.ntu.edu.tw/~cjlin/papers /guide)

[7] Reuters Corpus, Volume 1, English Language, 1996-08-20 to 1997-
08-19. Available through http://about.reuters.com/
researchandstandards/corpus/. Relased in November 2000.

[8] Chakrabarti S., Mining the Web- Discovering Knowledge from
hypertext data, Morgan Kaufmann Press, 2003

[9] http://www.csie.ntu.edu.tw/~cjlin/libsvm
[10] Morariu D., Classification and Clustering using Support Vector

Machine, 2nd Phd Report, University „Lucian Blaga“ of Sibiu,
2005, (Availabe at http://webspace.ulbsibiu.ro/daniel.morariu
/html/Docs/Report2.pdf)

Kernel Influence - Polynomial kernel

35
40
45
50
55
60
65
70
75
80
85

D1.0 D2.0 D3.0 D4.0 D5.0

Degree of kernel

A
cc

ur
ac

y(
%

) LibSvm

LibSvm+"b"

UseSVM

Figure 3 Influence of correlation between parameters from polynomial kernel

Influence of the type of modified - Gaussian Kernel

35
40
45
50
55
60
65
70
75
80
85

0.03 0.1 1 1.3 1.8 2.1 def

Kernel degree

A
cc

ur
ac

y(
%

)

LibSvm

LibSVM +
"gamma"

UseSVM

Figure 4 Influence of modified about Gaussian Kernel

