
Appeared in Journal of Systems Architecture, Volume 55, Issue 3, pp. 188-195, 2009, ISSN 1383-7621

Exploiting Selective Instruction Reuse and Value
Prediction in a Superscalar Architecture

Arpad Gellert, Adrian Florea, Lucian Vintan
Computer Science Department, “Lucian Blaga” University of Sibiu, Emil Cioran Street, No. 4, 550025

Sibiu, Romania
{arpad.gellert, adrian.florea, lucian.vintan}@ulbsibiu.ro

Abstract: In our previously published research we discovered some very difficult to
predict branches, called unbiased branches. Since the overall performance of modern
processors is seriously affected by misprediction recovery, especially these difficult
branches represent a source of important performance penalties. Our statistics show that
about 28% of branches are dependent on critical Load instructions. Moreover, 5.61% of
branches are unbiased and depend on critical Loads, too. In the same way, about 21% of
branches depend on MUL/DIV instructions whereas 3.76% are unbiased and depend on
MUL/DIV instructions. These dependences involve high-penalty mispredictions
becoming serious performance obstacles and causing significant performance degradation
in executing instructions from wrong paths. Therefore, the negative impact of (unbiased)
branches over global performance should be seriously attenuated by anticipating the
results of long-latency instructions, including critical Loads. On the other hand, hiding
instructions’ long latencies in a pipelined superscalar processor represents an important
challenge itself. We developed a superscalar architecture that selectively anticipates the
values produced by high-latency instructions. In this work we are focusing on Multiply,
Division and Loads with miss in L1 data cache, implementing a Dynamic Instruction
Reuse scheme for the MUL/DIV instructions and a simple Last Value Predictor for the
critical Load instructions. Our improved superscalar architecture achieves an average IPC
speedup of 3.5% on the integer SPEC 2000 benchmarks, of 23.6% on the floating-point
benchmarks, and an improvement in energy-delay product (EDP) of 6.2% and 34.5%,
respectively. We also quantified the impact of our developed Selective Instruction Reuse
and Value Prediction techniques in a simultaneous multithreaded architecture (SMT) that
implies per thread Reuse Buffers and Load Value Prediction Tables. Our simulation
results showed that the best improvements on the SPEC integer applications have been
obtained with 2 threads: an IPC speedup of 5.95% and an EDP gain of 10.44%. Although,
on the SPEC floating-point programs, we obtained the highest improvements with the
enhanced superscalar architecture, the SMT with 3 threads also provides an important
IPC speedup of 16.51% and an EDP gain of 25.94%.

Keywords: superscalar architecture, SMT architecture, dynamic instruction reuse, load
value prediction, speculative execution, power consumption

1. Introduction

In our previous work, we show that unbiased branches are characterized by low
prediction accuracies (at average about 70%), irrespective of the prediction information
type used in the state-of-the-art branch predictors [Vin06, Oan06, Gel07, Vin08]. Since

 2

the overall performance of modern superscalar processors is seriously affected by
misprediction recovery, these difficult branches represent a source of important
performance penalties. As we pointed out in [Gel06], 28.68% of branches are dependent
on critical Load instructions (Loads with miss in the L2 data cache that reach the head of
the ROB), and 5.61% are unbiased and dependent on a previously committed critical
Load instruction. Furthermore, 21.48% of branches depend on MUL/DIV instructions
whereas 3.76% are unbiased and depend on MUL/DIV instructions. These dependences
involve high-penalty mispredictions becoming serious performance obstacles and causing
significant performance degradation in executing instructions from wrong paths.
Therefore, the negative impact of unbiased branches, over the global performance should
be seriously attenuated by anticipating the results of long-latency instructions. On the
other hand, hiding instructions’ long latencies in a pipelined superscalar processor
represents an important challenge itself.

Our main objective is to develop a superscalar architecture that selectively
anticipates the values produced by high-latency instructions. We will focus on Multiply,
Division and Loads with miss in the L1 data cache. The reusability degree of MUL and
DIV instructions, measured with an unlimited Reuse Table, was 28.9% on the integer
benchmarks and 61.9% on the floating-point benchmarks. These instructions would be
solved by a Dynamic Instruction Reuse scheme. The reusability degree of Load values
was 77.4% on the integer benchmarks and 76.4% on the floating-point benchmarks
[Gel08]. However, an additional Reuse Buffer for Load Value (Data) Reuse is not
necessary, because a similar reuse mechanism is already provided by the existing L1 and
L2 data caches. Therefore, the Load instructions with miss in the L1 data cache (selective
approach) would be solved through value prediction.

As a final objective of our research, we quantify the impact of our developed
Selective Instruction Reuse and Value Prediction techniques in a Simultaneous
Multithreaded Architecture that involves per thread Reuse Buffers (RB) and Load Value
Prediction Tables (LVPT). We measure the IPC and the dynamic power consumption of
the proposed SMT architecture by varying the number of threads. Also, we evaluate, for
different number of threads, the IPC speedup and the EDP gain of a SMT architecture
enhanced with Selective Instruction Reuse and Value Prediction against a classical SMT
architecture.

The organization of the rest of this paper is as follows. In Section 2, we review
related work in the fields of dynamic instruction reuse and value prediction. Section 3
presents the simulation methodology. Section 4 describes the two techniques that we
implemented for anticipating the results of long-latency instructions. In Section 5 we
illustrate the experimental results obtained using our developed simulator. The last
Section suggests directions for future works and concludes the paper.

2. Related Work

Sodani and Sohi in [Sod97] firstly introduced the idea of dynamic instruction reuse.
Dynamic instruction reuse is a non-speculative microarchitectural technique that exploits
the repetition of dynamic instructions. The main idea is that if an instruction or an
instruction chain is reexecuted with the same input values, its output value will be the
same. The authors introduced different schemes that maintain the inputs and the results of

 3

previously executed instructions in a hardware structure called Reuse Buffer. With
instruction reuse, the number of executed dynamic instructions is reduced and the critical
path might be compressed. According to the authors’ simulations on the SPEC95
benchmarks, at average 26% of dynamic instructions are reusable. This quite high reuse
degree is understandable taking into account that less than 20% of the static instructions
are generating more than 90% of the repeated dynamic instructions. These useful
statistics are qualitatively justified due to the fact that programs are written in a compact
(loops, recurrence, inheritance, etc.) and generic manner (the programs have to operate on
a variety of data structures). There are some important differences between our approach
and Sodani’s. We reuse only MUL and DIV instructions and, although we use the same
Sv scheme that track operand values for each instruction, our scheme does not require all
fields of Sodani’s Sv scheme. Since we do not reuse Load instructions, we renounce to the
address and memvalid fields. This reduces the hardware cost with benefits on power
consumption, too. Another difference refers to the moment when the instructions are
reused: in contrast with Sodani’s approach, the Reuse Buffer (RB) is accessed in our
architecture during the issue stage, because most of the MUL/DIV instructions found in
the RB in the dispatch stage do not have their operands ready.

Richardson introduced Instruction Memoization [Ric93], a technique that consists
in storing the inputs and outputs of long-latency operations and reusing the output if the
same inputs are encountered again. The memo table is accessed in parallel with the first
computation cycle, and the computation halts in the case of hit. Thus, memoing reduces a
multi-cycle operation to one-cycle when there is a hit in the memo table. In [Bro00] the
authors proposed a memoing technique in order to save power. Brooks et al. used memo
tables in parallel with the floating-point and integer multipliers, the floating-point adder,
and the floating-point divider. Their experimental results on SPEC92 benchmarks show
an average speedup of 1.7% and an average power improvement of 5.4%.

Citron and Feitelson in [Cit02] compare different instruction reuse techniques,
including Instruction Reuse (IR) and Instruction Memoization (IM). The authors splat the
Lookup Table into several smaller tables for floating-point instructions, Loads, multi-
cycle integer instructions (multiplication and division) and all other single-cycle
instructions. Each table contained 256 entries. They used IM only for multi-cycle
operations. The evaluation results (reuse degree and speedup) obtained on the SPEC95
benchmarks show that only floating-point applications can benefit from instruction reuse.

Golander and Weiss present in [Gol07] different instruction reuse methods for
Checkpoint Processors. In checkpoint microarchitectures a misspeculation initiates the
rollback, in which the latest safe checkpoint preceding the point of misprediction is
recovered, and the reexecution of the entire code segment between the recovered
checkpoint and the mispredicting instruction (selective reissue). The authors proposed
two instruction reuse methods for normal execution and other two methods for
reexecution after a misprediction. The Trivial method identifies trivial arithmetic
operations having one of the inputs a neutral element or both operands with the same
magnitude. The hardware for detecting trivial computations and selecting the result
consists in comparators for the input operands and selectors for the writeback. In our
simulator, we implemented the Trivial method proposed by Golander. The SelReuse
method uses a small fully associative reuse cache for long latency arithmetic operations.
As the authors are showing, an 8-entry cache is sufficient for reusing most of the

 4

available results. The RbckReuse method is used for all instruction types from reexecuted
paths, excepting control-flow instructions. Finally, the RbckBr method is used for the
branch instructions from reexecuted paths. The reuse structure maintains only the branch
outcome and relies on the BTB for the branch target address. A reuse approach that
combines all four methods briefly presented above requires an area of 0.87 mm2 and
consumes 51.6 mW. It achieves average instructions per cycle (IPC) speedup of 2.5% for
the SPEC 2000 integer benchmarks, of 5.9% for the SPEC 2000 floating point
benchmarks, and an improvement in energy-delay product of 4.80% and 11.85%,
respectively.

Lipasti et al. [Lip96] firstly introduced Value Locality as the third facet of the
statistical locality concepts used in computer engineering. They defined the value locality
as “the likelihood of the recurrence of a previously-seen value within a storage location
inside a computer system”. Measurements using SPEC95 benchmarks show that value
locality on Load instructions is about 50% using a history of one (producing the same
value like the previous one) and 80% using a history of 16 previous instances. Based on
the dynamic correlation between Load instruction addresses and the values the Loads
produce, Lipasti et al. proposed a new data-speculative micro-architectural technique
entitled Load Value Prediction that can effectively exploit value locality. Load value
prediction is useful only if it can be done accurately since incorrect predictions can lead
to increased structural hazards and longer Load latency. Starting by Loads’ dynamic
behavior and classifying them separately (unpredictable, predictable and constants), it can
be extracted the full advantage of each case. It can be avoided the cost of mispredictions
by detecting the unpredictable Loads and the cost of memory access through identifying
highly predictable Loads. An important difference between our value prediction approach
and Lipasti’s is that we selectively predict Load instructions predicting only those
generating a miss in L1 cache. Thus, we attenuate the mispredictions cost and reduce the
hardware cost of the speculative micro-architecture. Moreover, since less hardware is
required, there is also less power consumption.

Mutlu et al. presented in [Mut06] a new hardware technique named address-value
delta (AVD) prediction, able to parallelize dependent cache misses. They observed that
some Load instructions exhibit stable relationships between their effective addresses and
data values, due to the regularity of allocating structures in the memory by the program,
which is sometimes accompanied by the regularity in the program’s input data. In order
to exploit these regular memory allocation patterns, the authors proposed an AVD
structure that maintains the Load instructions having a stable address-value difference
(delta). Each entry of the AVD table consists in the following fields: Tag (the upper bits
of the Load’s PC), AVD (the address-value delta corresponding to the last occurrence of
that Load) and Conf (a saturating counter that records the confidence of AVD). The Conf
field is used to avoid predictions for Loads with an unstable AVD. If a Load instruction
having a stable AVD occurs with a cache miss, its data value is predicted by subtracting
the stable delta from its effective address. This prediction enables the preexecution of
dependent instructions, including Loads with cache miss. The experimental results show
that integrating a 16-entry AVD predictor into a runahead processor improves the
average execution time by 14.3%, but only for pointer-intensive applications.

Liao and Shieh proposed in [Lia02] a new scheme that combines value prediction
and instruction reuse. The main idea consists in predicting operand values if they are not

 5

available and speculatively reusing instructions if the predicted operands match the
values from the Reuse Buffer (RB). Obviously, the correct path must be reexecuted in the
case of misprediction. If the operands of an instruction are ready and their values match
the value fields of the corresponding RB entry, the result is guaranteed to be correct, and
therefore the execution is non-speculative. The simulations on the SPEC95 benchmarks
showed that this scheme provides an average speedup of 8.9%.

In [Cha08] the authors proposed a hardware-based method, called early load, in
order to hide the load-to-use latency (the latency that instructions wait for their operands
produced by Load instructions) with little additional hardware costs. The key idea is to
make use of the time that instructions are waiting in the instruction queue to load the data
early, before the Loads are effectively executed, by pre-decoding instructions during the
fetch stage. Thus, instead of using previous instances (values) of the current Load
instruction Chang et al. are using an earlier executed-instance (value) of the current Load
instance. In this way, the chance to be a correct value seems to increase. They use a small
table, called Early Load Queue (ELQ) that records Load instructions and the early loaded
data. The proposed scheme allows Load instructions to load data from memory before the
execution stage. Obviously, a detection method assures the correctness of the early
operation before the Load enters into the execution stage. If the corresponding ELQ entry
is valid in the Load’s dispatch stage, the execution of the Load instruction is completely
avoided and all dependent instructions get the data from the ELQ. Unfortunately this
method doesn’t work for out-of-order speculative architectures whereas our technique
does. Also, it works only for very small instruction queues. The experimental results
showed that this scheme can achieve a performance improvement of 11.64% on the
Dhrystone benchmark and 4.97% on the MiBench benchmark suite.

3. Simulation Methodology

We developed a cycle-accurate execution driven simulator derived from the M-SIM
simulator [Sha05] supporting the unmodified, statically linked Alpha AXP binaries as
well as the power estimation as supplied by the Wattch framework [Bro00]. M-SIM
extends the SimpleScalar toolset [Bur97] with accurate models of the pipeline structures,
including explicit register renaming, and support for the concurrent execution of multiple
threads. We modified M-SIM to incorporate our selective instruction reuse and value
prediction techniques in order to measure the relative IPC speedup and relative energy-
delay product gain when the results of long-latency instructions are anticipated.

All simulation results are generated on the SPEC 2000 benchmarks [SPEC] and
are reported on 1 billion dynamic instructions, skipping the first 300 million instructions.
For the superscalar architecture we evaluated six floating-point benchmarks (applu,
equake, galgel, lucas, mesa, mgrid) and seven integer benchmarks: computation intensive
(bzip, gcc, gzip) and memory intensive (mcf, parser, twolf, vpr). In SMT mode, the M-
SIM runs multiple benchmarks as different threads in parallel. Therefore, we combined
benchmarks into groups of 2, 3 or 6 depending on the simulated SMT architecture. Thus,
we used {bzip, gcc}, { gzip, parser}, { twolf, vpr}, { applu, equake}, { galgel, lucas},
{ mesa, mgrid} for our SMT with 2 threads, {bzip, gcc, gzip}, { parser, twolf, vpr},
{ applu, equake, galgel}, { lucas, mesa, mgrid} for the SMT with 3 threads, and {bzip,

 6

gcc, gzip, parser, twolf, vpr}, { applu, equake, galgel, lucas, mesa, mgrid} for the 6-
threaded SMT. Table 1 presents some important parameters of the simulated architecture:

Execution unit Number of units Operation latency
intALU 4 1
intMULT / intDIV 1 3 / 20
fpALU 4 2

Execution
Latencies

fpMULT / fpDIV 1 4 / 12
Superscalarity Fetch / Decode / Issue / Commit width = 4

Branch predictor bimodal predictor with 2048 entries
Memory unit Access Latency
4-way associative L1 data cache, 32 KB 1 cycle
8-way associative unified L2 data cache,
512 KB

6 cycles
Caches and

Memory

Memory 100 cycles
Register File: 32 INT / 32 FP
Reorder Buffer (ROB): 128 entries Resources
Load/Store Queue (LSQ): 48 entries

Table 1. Parameters of the simulated architecture

The power consumption measurements are generated using an 80 nm CMOS
technology. Figure 1 presents the structure of the simulator.

Cycle-Level
Performance

Simulator

Hardware
Configuration

SPEC
Benchmark

Power Models
Hardware Access Counts

Performance
Estimation

Power
EstimationCycle-Level

Performance
Simulator

Hardware
Configuration

SPEC
Benchmark

Power ModelsPower Models
Hardware Access Counts

Performance
Estimation

Power
Estimation

Figure 1. The structure of the simulator

As Figure 1 shows, the simulator generates both performance and power
consumption estimation. The detailed power modeling methodology, used in the
simulator, is presented in [Bro00]. The dynamic power consumption in CMOS
microprocessors is defined as:

faVCP ddd ⋅⋅⋅= 2 (1)

where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply voltage, and f
is the clock frequency. Vdd and f depend on the assumed process technology. The activity
factor a indicates how often clock ticks lead to switching activity on average. The power
consumption of the modeled units highly depends on the internal capacitances of the
circuits. From the capacitance point of view, there are three categories of architectural
structures: array structures, content-associate memories, and complex logic blocks. The
first two categories are used to model the caches, branch predictors, the reorder buffer,

 7

the register renaming table, and the register file, while the last category is used to model
functional units.
 For the energy measurements, we used the Energy-Delay Product, a widely used
metric [Gon96, Bro00, Gol07]:

2IPC

PowerTotal
EDP = (2)

The Energy-Delay Product (EDP) represents the processor’s total power, divided by the
squared IPC.

4. Anticipating Long-Latency Instructions Results

4.1. Selective Dynamic Instruction Reuse

For the MUL and DIV instructions we will use the Sv reuse scheme. The information
about instructions is maintained in a direct mapped Reuse Buffer (RB). The RB is
accessed during the issue stage, because most of the MUL/DIV instructions found in the
RB during the dispatch stage do not have their operands ready (91.5% on the integer
benchmarks and 64.6% on the floating-point benchmarks). Each RB entry has the
following fields: Tag (the higher part of the PC), SV1 and SV2 (the source values of the
MUL/DIV instruction), Result (the output value of the MUL/DIV instruction). Since we
do not reuse Loads with this scheme, the address and mem valid fields used in [Sod97]
are unnecessary. In this way, our implemented structure is simpler and more cost
effective (from hardware budget and power consumption point of view) than the initial
scheme proposed by Sodani and Sohi.

Sv Reuse Buffer (RB)

PC of MUL / DIV

Tag SV1 SV2 Result

Sv Reuse Buffer (RB)

PC of MUL / DIV

Tag SV1 SV2 Result

Figure 2. Reuse scheme for MUL & DIV instructions

If a certain MUL/DIV instruction is found in the RB, a reuse test is generated. If
the actual operand values, taken from the ROB, match the SV1 and SV2 fields from the
selected RB entry, the instruction is not sent to a functional unit, its result value being
already available for dependent instructions. Every non-reused MUL/DIV instruction
updates the RB in the commit stage: writes the tag, the source values and the result into
the corresponding RB entry. From the power consumption point of view, the Reuse
Buffer was modeled as a cache array structure using the same power models that the
other array structures use. Obviously, the main benefit of reusing long-latency
instructions consists in unlocking dependent instructions (see Figure 3). In Figures 3 and

 8

5, all stages except Execute stage are a single cycle length; the Execute stage has variable
length, depending upon the latency of the executing instruction (see Table 1).

Fetch Decode Issue Execute Commit

RBLookup (PC, V1, V2) Result (if hit)

Fetch Decode Issue Execute Commit

RBLookup (PC, V1, V2) Result (if hit)
Figure 3. Pipeline with Reuse Buffer (RB)

We also detected trivial operations implementing a technique firstly introduced in
[Ric93] by Richardson. We considered the following operations: V*0, V*1, 0/V, V/1 and
V/V. A simple hardware scheme for detecting trivial computations and selecting the
result is presented in [Gol07] and consists in comparators for the input operands and
selectors for the write-back. If during the dispatch stage, a MUL instruction is detected
with an operand value of 0 or 1, the result is provided by the detector, avoiding the
functional unit allocation and execution. In the same manner, if a DIV instruction is
detected with the first operand being 0, the second operand 1, or with identical operands,
the result is provided by the detector being thus available at the end of the dispatch stage.
The Reuse Buffer is accessed during the issue stage for the reuse test only if the
MUL/DIV operation is not detected as being trivial in the dispatch stage.

4.2. Selective Load Value Prediction

We will integrate into our architecture a simple Last Value Predictor used only for Loads
with miss in the L1 data cache (selective approach). In this way, the implemented
structure is more efficiently used; the collisions number will be lower against the
approach that predicts all Load instructions, having tables of the same size. The
information about Load instructions is maintained in a direct mapped Load Value
Prediction Table (LVPT). The LVPT is accessed during the issue stage, only if the
current Load instruction involves a miss in the L1 data cache (critical Load). Each LVPT
entry has the following fields: Tag (the higher part of the PC), Counter (a 2-bit saturating
confidence counter with two unpredictable and two predictable states), and Value (the
Load instruction’s result).

Load Value Prediction
Table (LVPT)

PC of Load with miss
in L1 Data Cache

Tag Counter Value

Load Value Prediction
Table (LVPT)

PC of Load with miss
in L1 Data Cache

Tag Counter Value

Figure 4. The Last Value Predictor architecture

 9

In the case of a hit in the LVPT, the corresponding Counter is evaluated. If the
confidence counter is in an unpredictable state, the Load is executed without prediction.
Otherwise the Value from the selected LVPT entry is speculatively forwarded to the
dependent instructions. In the commit stage, when the real value is available, in the case
of misprediction, a recovery is necessary in order to squash speculative results and
selectively re-execute the dependent instructions with the correct values (see Figure 5).
This selective reissue requires a mechanism for propagating misprediction information
through the data flow graph to all dependent instructions. We considered in our
simulations value prediction latency of one cycle and, in the misprediction case, a
recovery taking 7 cycles.

Fetch Decode Issue Execute Commit

LVPTIf Load with miss
in L1 Data Cache

Predicted Value

Misprediction Recovery

Fetch Decode Issue Execute Commit

LVPTIf Load with miss
in L1 Data Cache

Predicted Value

Fetch Decode Issue Execute Commit

LVPTIf Load with miss
in L1 Data Cache

Predicted Value

Misprediction Recovery

Figure 5. Pipeline with Load Value Predictor

During the commit stage, every critical Load updates the LVPT: only the Counter
field in the case of correct prediction or the Value and the Counter fields in the case of
misprediction. In the miss case the LVPT, the Tag and the Value are inserted into the
selected entry, and the Counter is reset (strongly unpredictable state). From the power
consumption point of view, the LVPT was modeled as a cache array structure using the
same power models that the other array structures use.

5. Experimental Results

Figure 6 presents the reuse degrees obtained with and without detecting trivial operations
in the superscalar architecture.

0%

10%

20%

30%

40%

50%

60%

70%

16 32 64 12
8

25
6

51
2

10
24

20
48

RB entries

R
eu

se
 D

eg
re

e

INT - RB

INT - RB & Trivial

FP - RB

FP - RB & Trivial

Figure 6. Reuse degrees obtained for different RB sizes with and without trivial operation

detection in the superscalar architecture

 10

The RB provides on the integer benchmarks a reuse degree of 17.2% with an RB of 1024
entries, compared with the reusability degree of 28.9% (the upper limit obtained with an
unlimited RB). It was more efficient for the floating-point benchmarks, where we
obtained a reuse degree of 54.8% with an RB of 2048 entries, compared with the
reusability degree of 61.9% (through an unlimited RB). As Figure 6 shows, trivial
operations detection improves significantly the reuse degree.

Table 2 presents the reuse degrees, the IPC, and the power consumption obtained
with the superscalar architecture, on the integer and floating-point SPEC 2000
benchmarks, by using the Sv reuse scheme together with the Trivial Operation Detector
for the MUL and DIV instructions. The Reuse Degree columns represent the percentage
of reused MUL and DIV instructions across all the evaluated integer and floating-point
benchmarks. The IPC represents the average instructions per cycle. The RB Power
column shows the additional dynamic power dissipated by the RB for each evaluated size
in mW and in percentages reported to the total processor power.

SPEC2000 integer SPEC2000 floating-point RB Power RB entries
Reuse Degree [%] IPC Reuse Degree [%] IPC [mW] [%]

0 (no RB) – 1.6857 – 2.0410 0 0.000
16 25.8 1.6881 36.8 2.0612 7.2 0.008
32 27.4 1.6862 37.3 2.0613 12.7 0.014
64 28.1 1.6862 40.5 2.0747 16.3 0.018
128 28.2 1.6862 42.5 2.0752 28.8 0.031
256 28.2 1.6862 45.8 2.0787 38.4 0.042
512 28.5 1.6862 50.6 2.0828 70.2 0.077
1024 29.0 1.6862 56.9 2.0863 99.6 0.109
2048 29.0 1.6862 62.8 2.0888 178.8 0.195

Table 2. Reuse degree, IPC and power consumption obtained with the superscalar architecture
using the RB and Trivial Operation Detector on the SPEC2000 benchmarks

The very low IPC gain measured on the integer benchmarks is justified because
only about 11 million instructions were reused from a total of 7 billion across all the
integer benchmarks. Moreover, reusing MUL/DIVs belonging to wrong speculated paths
frequently involves issuing some long latency Loads. These critical instructions would
not be executed without successful reuse.

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%
4.5%

16 32 64 12
8

25
6

51
2

10
24

20
48

RB entries

IPC Speedup

EDP Gain

Figure 7. Relative IPC speedup and relative energy-delay product gain on the floating-point

benchmarks with RB and Trivial Operation Detection in the superscalar architecture

 11

Although the RB structure dissipates additional dynamic power, reusing long-
latency instructions increases the IPC and therefore lowers the total energy consumption
(see Figure 7). We determined the energy-delay product for the superscalar architecture
without RB and for the architecture with RB of different sizes. The EDP Gain represents
the relative energy-delay product improvement for each RB size.
 The speedup is insignificant in the case of the integer benchmarks, due to the
significantly lower number of MUL and DIV instructions. Consequently, the energy-
delay product is better only for RB sizes between 16 and 128 entries, but the
improvement is insignificant. These results are in concordance with Citron [Cit02] who
also remarked the poor evaluation results (reuse degrees and speedups) obtained on the
SPEC95 integer benchmarks. Therefore a significant benefit of MUL/DIV instructions
reuse is achieved only for floating-point applications.
 Table 3 presents the prediction accuracy, the IPC, and the power consumption
obtained by evaluating our developed superscalar architecture with MUL/DIV Reuse
Buffer of 1024 entries and Trivial Operation Detector for the MUL and DIV instructions
and with Last Value Predictor for critical Load instructions. The PA columns represent
the prediction accuracy of critical Loads. The IPC represents the average instructions per
cycle. The LVPT Power column shows the additional dynamic power dissipated by the
LVPT for each evaluated size in mW and in percentages reported to the total processor
power.

SPEC2000 integer SPEC2000 floating-point LVPT Power LVPT entries
PA IPC PA IPC [mW] [%]

0 (no RB, LVP) – 1.6857 – 2.0410 0 0.000
16 94.0 1.7066 99.7 2.1873 6.4 0.007
32 93.5 1.7094 99.8 2.2333 8.7 0.009
64 92.6 1.7245 99.8 2.3533 14.6 0.016
128 91.0 1.7318 99.7 2.3915 19.9 0.022
256 88.7 1.7351 99.5 2.4378 33.6 0.037
512 88.1 1.7387 99.3 2.4484 48.0 0.052
1024 87.1 1.7456 99.2 2.5241 84.9 0.092
2048 87.2 1.7460 99.1 2.5320 128.1 0.139

Table 3. Prediction accuracy, IPC and power consumption obtained with the superscalar
architecture using an RB of 1024 entries, the Trivial Operation Detector and the LVPT

Figure 8 presents the relative IPC speedup and the relative energy-delay product
improvement for the integer and floating-point benchmarks. We determined the energy-
delay product for the superscalar architecture without RB and LVPT and for the
architecture with a RB of 1024 entries and LVPTs of different sizes. The EDP Gain
represents the relative energy-delay product improvement for each LVPT size. As it can
be observed, the optimal LVPT size is 1024. Both IPC speedup and EDP gain are
significantly higher on the floating-point benchmarks compared to the integer
benchmarks. This difference occurs because the number of critical Loads is more than
twice higher in the floating-point benchmarks. The difference is further accentuated by
the percentage of predicted critical Loads (classified as predictable by LVPT confidence
counters) which is 85% on the floating-point benchmarks and only 40% on the integer
benchmarks [Gel08]. Finally, the difference is also slightly increased by the higher
prediction accuracy obtained on the floating-point benchmarks.

 12

0%
5%

10%
15%
20%
25%
30%
35%
40%

16 32 64 12
8

25
6

51
2

10
24

20
48

LVPT entries

INT - IPC Speedup

INT - EDP Gain

FP - IPC Speedup

FP - EDP Gain

Figure 8. Relative IPC speedup and relative energy-delay product gain with the superscalar

architecture using a Reuse Buffer of 1024 entries, the Trivial Operation Detector, and the Load
Value Predictor

We also measured the memory traffic reduction as the percentage of correctly
predicted Loads reported to the total number of memory accesses. Our evaluations show
an average memory traffic reduction of 1.58% on the integer benchmarks and of 10.93%
on the floating-point benchmarks, which are in concordance with our energy
consumption estimations.

The selective instruction reuse approach proposed by Golander and Weiss
(presented in paragraph 2) achieves an average IPC speedup of 2.5% on the SPEC 2000
integer benchmarks, of 5.9% on the floating point benchmarks, and an improvement in
energy-delay product of 4.80% and 11.85%, respectively. In comparison, our improved
superscalar architecture achieves an average IPC speedup of 3.5% on the integer SPEC
benchmarks, 23.6% on the floating-point benchmarks, and an improvement in energy-
delay product of 6.2% and 34.5%, respectively.

As a final objective of this research, we quantified the impact of our developed
techniques for anticipating long-latency instructions results in a simultaneous
multithreaded architecture that involves per thread RBs and LVPTs. We measured the
IPC and the dynamic power consumption of the proposed SMT architecture by varying
the number of threads. Figure 9 presents the IPC obtained by evaluating our developed
superscalar and SMT architectures with and without Reuse Buffer and Load Value
Predictor. According to our previous results, we optimally sized the RB and the LVPT to
1024 entries. The RB and LVPT structures improve the IPC on all the evaluated general-
purpose applications within all architectural configurations (superscalar and SMT).
Therefore, we consider that the Worst Case Execution Time (WCET) is not increased by
our proposed techniques. As far as concern floating-point benchmarks, the highest
improvement was obtained with one thread, and as the number of threads grows, the IPC
improvement becomes lower. With fewer threads, the ten shared functional units (see
Table 1) are underused and therefore the Selective Instruction Reuse and Value
Prediction techniques have an important improvement potential. With a higher number of
threads, the same ten functional units are highly used by the SMT engine, thus both the
instruction reuse and value prediction mechanisms becoming less important. Therefore,
especially on floating-point benchmarks, with six threads we obtained the best IPC but
the lowest relative IPC speedup.

 13

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

1 2 3 6

Threads

IP
C

INT - SMT

INT - SMT with RB & LVPT

FP - SMT

FP - SMT with RB & LVPT

Figure 9. IPC obtained using the SMT architecture with and without RB & LVPT on the SPEC
2000 benchmarks

Finally, we evaluated, for different number of threads, the IPC speedup and the EDP gain
of a SMT architecture enhanced with Selective Instruction Reuse and Value Prediction
against a classical SMT architecture. In Figure 10 the first and third bars represent the
EDP gains obtained with our superscalar (one thread) and SMT architecture (2, 3 and 6
threads) on the floating-point and integer benchmarks, respectively. The second and
fourth bars presents the IPC speedups achieved with the same architectures.

0%
5%

10%
15%
20%
25%
30%
35%
40%

1 2 3 6

Threads

FP - EDP Gain

FP - IPC Speedup

INT - EDP Gain

INT - IPC Speedup

Figure 10. Relative IPC speedup and EDP gain (enhanced SMT vs. classical SMT) by varying

the number of threads

As Figure 10 depicts, the RB and LVPT structures achieved IPC speedups and
EDP gains on all the simulated configurations. The best improvements on the integer
benchmarks have been obtained with 2 threads: an IPC speedup of 5.95% and an EDP
gain of 10.44%. Although, on the floating-point benchmarks, we obtained the highest
improvements with the enhanced (LVPT + RB) superscalar architecture, the SMT with 3
threads also provides an important IPC speedup of 16.51% and an EDP gain of 25.94%.
Analyzing Figure 9 we can observe the advantage of SMT architectures against the
superscalar architecture irrespective these are enhanced or not with selective instruction
reuse and value prediction mechanism.

 14

6. Conclusions and Further Work

In this study, we have presented and evaluated a superscalar architecture that selectively
anticipates the values produced by high-latency instructions. We developed a Reuse
Buffer and a Trivial Operation Detector for MUL and DIV instructions and a Last Value
Predictor for critical Load instructions, and we integrated all these structures into the M-
SIM simulator [Sha05].

The experimental results, performed on the SPEC 2000 benchmarks, show a
significant speedup and reduced energy consumption for the proposed architecture. Using
a Reuse Buffer of 1024 entries together with the Trivial Operation Detector improves the
IPC with over 2.2% and reduces the energy consumption with 4% on the floating-point
benchmarks. Predicting critical Load instructions through an additional Last Value
Predictor, improves the IPC with 3.5% on the integer benchmarks and with 23.6% on the
floating-point benchmarks. This significant speedup lowers the energy consumption with
6.2% on the integer benchmarks and with 34.5% on the floating-point benchmarks, which
are far better than the improvements achieved by the selective instruction reuse approach
proposed by Golander and Weiss: 4.80% and 11.85%, respectively.

Finally, we have studied the impact of selective instruction reuse and value
prediction in a Simultaneous Multithreaded architecture. We used these methods to
anticipate the results of long-latency instructions (Mul, Div, Load), as we did within the
superscalar architecture. We implemented private RBs and LVPTs for each thread. Our
simulation results, performed on the forementioned benchmarks, show that the IPC is
better on all evaluated SMT configurations, when the RB and LVPT structures are used.
With fewer threads, the shared functional units are underused and therefore the Selective
Instruction Reuse and Value Prediction techniques have an important improvement
potential. However, as the number of threads grows the IPC speedup decreases, because
the shared functional units are better exploited due to the higher thread-level parallelism
and therefore the RB and LVPT structures become less important. We measured the
highest IPC of 2.29 on the integer and 2.88 on the floating-point benchmarks with our
six-threaded enhanced SMT architecture. As a conclusion, applying some well-known
anticipatory techniques selectively on long-latency instructions provides serious
performance gain and significantly reduces energy consumption in superscalar and even
in multithreaded architectures.

As a further work, understanding and quantifying instruction reuse and value
prediction benefits in a multicore architecture might be a very important challenge.

Acknowledgments

This work was partially supported by the Romanian National Council of Academic
Research (CNCSIS) through the research grants TD-248/2007 and A-39/2007.

References

[Bro00] Brooks D., Tiwari V., Martonosi M., Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations, International Symposium on Computer
Architecture, Vancouver, 2000.

 15

[Bur97] Burger D., Austin T., The SimpleScalar tool set, version 2.0, Technical Report
1342, University of Wisconsin - Madison Computer Sciences Department, 1997.

[Cha08] Chang S.C., Li W.Y.H., Kuo Y.J., Chung C.P., Early Load: Hiding Load
Latency in Deep Pipeline Processor, Proceedings of The Asia-Pacific Computer Systems
Architecture Conference (ACSAC), Taiwan, August 2008.

[Cit02] Citron D., Feitelson D., Revisiting Instruction Level Reuse, Proceedings of the
Workshop on Duplicating, Deconstructing, and Debunking (WDDD), May 2002.

[Gel06] Gellert A., Florea A., Finding and Solving Difficult Predictable Branches,
Science and Supercomputing in Europe, Barcelona, Spain, 2006.

[Gel07] Gellert A., Florea A., Vintan M., Egan C., Vintan L., Unbiased Branches: An
Open Problem, Twelfth Asia-Pacific Computer Systems Architecture Conference
(ACSAC’07), Seoul, Korea, August 2007.

[Gel08] Gellert A., Developing and Improving the Performances of Some Predictive
Architectures, Technical Report, "Lucian Blaga" University of Sibiu, April 2008.

[Gol07] Golander A., Weiss S., Reexecution and Selective Reuse in Checkpoint
Processors, HiPEAC Journal, Vol. 2, Issue 3, 2007.

[Gon96] Gonzalez R., Horowitz M., Energy Dissipation in General Purpose
Microprocessors, IEEE Journal of Solid State Circuits, Vol. 31, No. 9, September 1996.

[Lia02] Liao C.H., Shieh J.J., Exploiting Speculative Value Reuse Using Value
Prediction, Seventh Asia-Pacific Computer Systems Architecture Conference,
Melbourne, Australia, February 2002.

[Lip96] Lipasti M. H., Wilkerson C. B., Shen J. P., Value Locality and Load Value
Prediction, Proceedings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 138-147, October 1996.

[Mut06] Mutlu O., Kim H., Patt Y. N., Address-Value Delta (AVD) Prediction: A
Hardware Technique for Efficiently Parallelizing Dependent Cache Misses, IEEE
Transactions on Computers, Vol. 55, No. 12, December 2006.

[Oan06] Oancea M., Gellert A., Florea A., Vintan L., Analyzing Branch Prediction
Contexts Influence, Advanced Computer Architecture and Compilation for Embedded
Systems, (ACACES 2006), pages 5-8, L’Aquila, Italy, July 2006.

[Ric93] Richardson S., Exploiting trivial and redundant computation, 11th Symposium on
Computer Arithmetic, July 1993.

[Sha05] Sharkey J., Ponomarev D., Ghose K., M-SIM: A Flexible, Multithreaded
Architectural Simulation Environment, Technical Report CS-TR-05-DP01, Department
of Computer Science, State University of New York at Binghamton, October 2005.

[Shi01] Shivakumar P., Jouppi N. P., Cacti 3.0: An Integrated Timing, Power, and Area
Model, WRL Research Report, Aug 2001, USA.

[Sod97] Sodani A., Sohi G., Dynamic Instruction Reuse, The 24th Annual International
Symposium on Computer Architecture (ISCA’97), Denver, 1997.

[SPEC] SPEC2000, The SPEC benchmark programs, http://www.spec.org.

 16

[Vin06] Vintan L., Gellert A., Florea A., Oancea M., Egan C., Understanding Prediction
Limits through Unbiased Branches, Eleventh Asia-Pacific Computer Systems
Architecture Conference (ACSAC’06), Shanghai, China, September 2006.

[Vin08] Vintan L., Florea A., Gellert A., Forcing Some Architectural Ceilings of the
Actual Processor Paradigm, Invited Paper, The 3rd Conference of The Academy of
Technical Sciences from Romania (ASTR), Cluj-Napoca, November 2008.

