
Enhancing the Sniper Simulator with Thermal

Measurement

Adrian Florea, Claudiu Buduleci, Radu Chiș, Arpad Gellert, Lucian Vințan

Computer Science and Electrical Engineering Department

“Lucian Blaga” University of Sibiu

Sibiu, Romania

adrian.florea@ulbsibiu.ro, claudiu.buduleci@ulbsibiu.ro, radu.chis@gmail.com, arpad.gellert@ulbsibiu.ro,

lucian.vintan@ulbsibiu.ro

Abstract—This paper presents the enhancement of the Sniper

multicore / manycore simulator with thermal measurement

possibilities using the HotSpot simulator. We present a plugin

that interacts with Sniper to retrieve simulation data (integration

areas and power consumptions) and calls HotSpot to compute the

corresponding thermal results. The plugin also builds a two

dimensional floorplan for the simulated microarchitecture.

Furthermore we plan to integrate the simulation methodology

presented here into an automatic design space exploration

process using the multi-objective optimization tool called FADSE.

Keywords—multicore; simulator; power consumption; thermal;

HotSpot; Sniper

I. INTRODUCTION

Nowadays the voltage supply has significantly decreased
along with the integration area for everyday microelectronic
chips. The visible effect of those diminutions can be observed
in the speed of clock frequency of the chips. The frequency has
increased a lot over time and this led to the creation of some
high performance microelectronic chips that can execute our
programs faster. However, a physical barrier in increasing the
clock frequency has been encountered. Since the clock
frequency is getting higher and the chip area smaller, in
contrast the power consumption density increases. For sure this
is not an ideal technology scaling. Higher power consumption
and a smaller chip means that the power needs to dissipate in a
smaller area and this leads to a “cooking-aware” chip. It means
that the chip will have very high temperatures and the
conventional cooling methods (air-cooled heat sink, heat pipe,
etc.) are not efficient. The temperature is limited to 111.8

°
C;

above this threshold the chips start to melt. This is why thermal
measurement is critical in today’s microprocessor’s design.

An attempt to mitigate this issue was by introducing the
multicore systems. Nowadays more CPUs, usually with lower
frequency, are integrated in one single silicon chip. At first
were dual core chips (2 cores on a chip), later appeared four
cores and now we have 64 or more cores for general usage on a
single silicon chip. As an example, TILE64 is a multicore
processor produced by Tilera company and has 64 cores on a
single chip. But the power wall still remains and there are a lot
of techniques for preventing the chip overheating. For example,
dynamic voltage and frequency scaling are the most commonly
used technological solutions for reducing power consumption
and preventing the chip to overheat. Unfortunately, those

techniques are implying a reduction in global performance of
the system.

These days the temperature metric has gained a ramp up in
academic research and it is a very active and attractive area of
investigation. A public open source simulator that was built for
chip temperature analysis is HotSpot [3] and was developed at
the University of Virginia by Wei Huang in his PhD
dissertation under the supervision of Professor Mircea Stan and
Professor Kevin Skadron (thesis co-advisor).

The main purpose of this paper is to enhance the Sniper
multicore simulator [4] with a thermal analysis possibility
provided by HotSpot. Developing a plugin that interacts with
Sniper and HotSpot, observing the thermal behavior of the
simulated microarchitecture along with the chip area,
performance and energy consumption forms the main goals of
this paper. Adding temperature measurement possibilities to
the Sniper simulator will involve for sure more realistic design
space explorations during the optimization processes.

The organization of the rest of this paper is as follows.
Section 2 describes a short theoretical background related to
thermal analysis of computer microarchitectures, whereas
Section 3 presents an overview of our plugin. Section 4
illustrates the simulation methodology and some preliminary
simulation results. Finally, Section 5 suggests directions for
future work and concludes the paper.

II. RELATED WORK

Thermal measurement is an important metric for nowadays
microprocessors. Many powerful software applications that
simulate the thermal behavior of a given microarchitecture over
time are continuously developed and maintained.

In [6] the authors show the importance of collaboration
between the thermal engineering and computer architecture
communities. It is shown that different thermal constraints
require different approaches in order to optimize the
microarchitecture. Various thermal management methods for
multicore systems were exploited in [7]. One important aspect
presented in this paper is the necessity of hardware-software
collaboration for controlling the chip temperatures.

The most popular simulator for such purpose is HotSpot
[3]. It contains a block-model method which is based on the
analogy between electric circuits and heat conduction theory. A
network of thermal “resistances” and “capacitances” are

Proceedings of the 18th International Conference on System Theory, Control and Computing, Sinaia, Romania, October 17-19, 2014

ISBN 978-1-4799-4602-0 ©2014 IEEE 31

created internally in order to compute the temperatures. An
interesting study has been made in [1]. This study compares
HotSpot with other two thermal simulators that use a different
approach to compute the temperatures based on power input.
The first solver is ATMI [5] and it is based on classical
analytical methods that do not rely on space discretization and
provides the exact solution. The second solver is FreeFEM3D
[12], a general purpose finite-element solver that offer
temperature results “close” to the actual solution. In [1] some
accuracy issues of HotSpot have been found. The authors show
that those accuracy issues can occur in some special
circumstances. Furthermore the accuracy of HotSpot was
improved in [2] by the authors. Functional blocks are divided
into sub-blocks in order to obtain a better accuracy, the heat
transfer between the heatsink and environment is more detailed
and closer to reality. They also improved the equation used to
compute the lateral thermal resistance of a block and the
transient thermal modeling.

We have not found any studies regarding thermal
measurements integrated into the Sniper simulator. A step to
integrate HotSpot in Sniper was made by Wim Heirman, one of
the Sniper developers. He created a floorplan for a 64-core
system and called in parallel with Sniper a slightly modified
version of HotSpot to compute only one time step at a time [4].
The HotSpot modification consists in writing out all internal
temperatures in order to allow the simulation of one time step.

Our approach is different because we use a more detailed
and flexible floorplan with a granularity of 5 functional units
per core instead of a floorplan at a core-level granularity. We
are interested on which unit from the core the hotspot occurs.
Another difference is that we call HotSpot after the Sniper
simulation is finished, not in parallel because the current
version of HotSpot 5.02 does not officially support this feature.
Also our plugin automatically generates the floorplan for the
simulated microarchitecture based on the integration areas
provided by MCPAT [14] and the number of cores. Due to the
automatic thermal analysis allowed by the automatic floorplan
creation, our method is more efficient than the previous
methods which through manual floorplan creation were limited
to manual thermal analysis on selected architectural
configurations. This improvement makes it possible to
integrate thermal analysis into any automatic design space
exploration process. Our goal is to achieve a thermal
qualitative accuracy as high as possible. As far as we know, we
are the first researchers investigating a 4-D (Performance,
Energy, Area and Temperature) multi-objective optimization
approach into a multicore architecture.

III. INTEGRATION OF HOTSPOT INTO SNIPER AS A PLUGIN

A. Plugin overview

Sniper is a fast and accurate simulator for multicore
microprocessors [4]. This simulator is modeling the Nehalem
microarchitecture and was validated against this
microarchitecture. We developed a plugin that calls the
HotSpot simulator at a certain parameterized time interval (e.g.
500µs) during the Sniper’s simulation process. The plugin also
generates the floorplan of the simulated architecture and
collects averages of dynamic power consumptions for each
functional unit for the current time interval. An overview of

how this plugin interacts with Sniper and HotSpot can be seen
in Fig. 1.

The HotSpot plugin is developed in the Python
programming language and it lies in the scripts folder inside
the Sniper simulator. In order to use it simply add “-s
hotspot:500000:block” to the Sniper command line. Parameters
signification:

• First parameter – “500000”, sets the calling interval of the
HotSpot plugin in nanoseconds;

• Second parameter – “block”, informs the HotSpot simulator
about the used thermal simulation method (block or grid).

Fig. 1. HotSpot plugin interaction

The script implements a method that is automatically called
by the Sniper simulator at a given interval. In this method, the
MCPAT modeling framework [9] is called and the power
consumption results are added to the power trace file. After the
simulation ends the HotSpot simulator is called using the given
simulation method (block or grid) and the corresponding
temperature trace is generated.

We chose the power sampling interval to be 500
microseconds because the HotSpot authors state that if
extremely short intervals (e.g. nanoseconds) are used then the
simulator could produce inaccurate results. They recommend
sampling intervals at the order of hundreds of microseconds,
milliseconds or longer. Those values are more in line with
chip/package thermal time constants.

B. Challenges

The main challenges for this topic are the following:

• How to arrange the CPU functional units (branch predictor,
caches, execution units, etc.) in a certain floorplan?

• How to run the HotSpot simulator in parallel with Sniper in
order to save simulation time?

32

• How to call HotSpot if we analyze a heterogeneous
architecture where cores have different frequencies or if the
cores adjust dynamically the frequency?

C. Building the floorplan

In order to solve the first challenge we started by answering
the following question: “How functional units of the Nehalem
microarchitecture are positioned in a floorplan for one core?”
The floorplan structure is based on the Nehalem architecture
described in [8]. In Fig. 2 it can be seen how the functional
units are positioned inside a core. The positioning is naturally
justified mainly by the communication distance between the
components. The distance between the components that
communicate with each other needs to be as small as possible
in order to have the smallest communication latency. For
example, the general purpose CPU registers must be as close as
possible to the execution units.

Fig. 2. Single-core Nehalem [8]

We collected all the integration areas obtained with
MCPAT (integrated out-of-the-box in the Sniper simulator
package). MCPAT is an integrated power, area, and timing
modeling framework for multithreaded, multicore and
manycore architectures [9]. Some functional unit values
generated by MCPAT also include values regarding functional
modules interconnections (wires, multiplexers, etc.) that cannot
be seen in Fig. 2.

Fig. 3. Floorplan associations

Taking into consideration the pipeline processing phases of
the microprocessor and the compact presentation of the
simulation results by Sniper we have merged (as in Fig. 3) the
following functional units:

• “Instruction Decode and Microcode” merged together with
“Branch Prediction” and “Instruction Fetch & Level one
Instruction Cache” units;

• “Execution Units” were merged with “Instruction
Reordering, Scheduling and Retirement”;

• “Level one Data Cache” merged with “Memory Ordering
and Execution”.

The association that we made can be seen in Fig. 3. For the

power trace generation we compute the sum of the merged

architectural components into one functional unit component.

Our plugin automatically generates the floorplan based on the

areas provided by MCPAT and the number of cores. For a

microarchitecture with 4 cores the floorplan is created exactly

like the floorplan presented in Fig. 1. If the simulated

microarchitecture has more than 4 cores, the first 4 cores are

placed on the first line and additional cores are placed under

the last line of cores (maximum 4 cores per line).

D. HotSpot parameters

In Fig. 4 it can be seen that the width of microprocessors
highly increases along with the number of cores. The ALPHA
21264 microarchitecture has the aspect ratio of the chip equal
to one (square shape). The aspect ratio of the Nehalem
microarchitecture is 1.5 (rectangular shape). The width of a
Nehalem chip is get according to the following formulas:

���������� � 	
��������

.� ���� (1)

��������� � ��������
����������

���� (2)

This fact automatically implies adjusting the heat sink and
heat spreader size for each configuration individually, in order
to obtain a better accuracy in thermal simulation.

Fig. 4. Chip width vs. number of cores

It can be seen that the chip width of the Nehalem
microarchitecture with 32 cores is about three times higher than
that of a single-core Nehalem. In other words, it will be harder
for a smaller heat sink and heat spreader to handle the heat
transfer of a bigger architecture.

The heat is transferred from the silicon chip into the heat
sink via the heat spreader. It is also known from the second law
of thermodynamics [3] that the heat flows in the direction
where the temperature decreases. The first law of
thermodynamics [3] states that the heat produced by a hot
region has to be equal to the heat absorbed by the cold region.
Hence the chip area increases significantly along with the
number of cores and based on the two laws shortly stated
above, we chose to adjust the heat sink and the heat speeder in

Execution
Units

+
Instruction
Reordering

Scheduling &
Retirement

L1 Data
Cache

+
Memory

Ordering &
Execution

Instruction Decode &
Microcode +

Branch Prediction +
Instruction Fetch & L1 Cache

L2 Cache &
Interrupt
Servicing

Paging

Instruction Fetch Unit:
Area = 5.860 mm^2

Instruction Cache:
Area = 3.146 mm^2

Branch Target Buffer:
Area = 0.649 mm^2

Branch Predictor:
Area = 0.138 mm^2

Global Predictor:
Area = 0.043 mm^2

Local Predictor:
L1_Local Predictor:
Area = 0.025 mm^2

L2_Local Predictor:
Area = 0.015 mm^2

Chooser:
Area = 0.0435mm^2

RAS:
Area = 0.010 mm^2

Instruction Buffer:
Area = 0.022 mm^2

Instruction Decoder:
Area = 1.857 mm^2

Renaming Unit:
Area = 0.369 mm^2

Int Front End RAT:
Area = 0.114 mm^2

FP Front End RAT:
Area = 0.168 mm^2

Free List:
Area = 0.041 mm^2

Execution Unit:
Area = 8.204 mm^2

Register Files:
Area = 0.570 mm^2

Integer RF:
Area = 0.362 mm^2

Floating Point RF:
Area = 0.208 mm^2

Instruction Scheduler:
Area = 2.179 mm^2

Instruction Window:
Area = 1.009 mm^2

FP Instruction Window:
Area = 0.328 mm^2

ROB:
Area = 0.841 mm^2

Integer ALUs (Count: 6):
Area = 0.470 mm^2

Floating Point Units:
Area = 4.658 mm^2

Complex ALUs (Mul/Div) :
Area = 0.235 mm^2

Results Broadcast Bus:
Area Overhead = 0.044 mm^2

L2

Area = 4.533 mm^2

Memory Management
Unit:

Area = 0.434 mm^2

Itlb:
Area = 0.301 mm^2

Dtlb:
Area = 0.087 mm^2

Load Store Unit:
Area = 8.80969 mm^2

Data Cache:
Area = 6.8453 mm^2

LoadQ:
Area = 0.0836 mm^2

StoreQ:
Area = 0.3220 mm^2

33

the following way. We measured the difference between the
ALPHA 21264 chip width and the width of the heat spreader
and heat sink, respectively.

���������� !"#$"	!#%" � 277%

	�����()��*�)�� !"#$"	!#%" � 88%

The following formulas will be applied to the HotSpot
simulator’s heat sink and heat spreader parameters:

����-�./����� � ��������� 0 1��������� ∗ ����-�./�.����3�	����4

����-������������ � ��������� 0 1��������� ∗ ����-��������.����3�	����4

Along with these parameters we also modified the
following:

• sampling_interval = calling_interval [s]

• base_proc_freq = CPUfrequency [Hz]

where calling_interval [s] is the time interval at which the
average dynamic power consumption is calculated (e.g. 500µs)
and CPUfrequency [Hz] is the actual clock frequency for the
simulated homogenous architecture.

IV. SIMULATION METHODOLOGY AND EXPERIMENTAL

RESULTS

A. Running HotSpot

The main goal is to get the most accurate thermal results
with less possible simulation time. Time is a very important
factor because we plan to run a multi-objective automatic
design space exploration using FADSE [13], Sniper and
HotSpot. Targeted objectives are: performance (IPC –
instructions per cycles), chip area, energy consumption and
chip temperature.

HotSpot has two main simulation cases: a block level
thermal model and a more accurate grid thermal model. The
second one offers a better accuracy regarding the first thermal
model but at the cost of processing time. We simulated for
testing purposes both methods. At the grid model we set the
granularity of 128 rows and 128 columns.

Fig. 5. Temperature variation over time for FFT benchmark on one core

Legend interpretation:

• GRID_128_HSS – simulated with a 128x128 grid and with
heat sink and spreader adjusted according to chip area;

• BLOCK_HSS – block level simulation heat sink and
spreader adjusted according to chip area;

• GRID_128 – simulated with a 128x128 grid and with the
default heat sink and spreader parameters.

Fig. 5 shows that the accuracy provided by the block
method is between the two grid methods. A simulation with the
grid model for a 128x128 grid matrix takes about 2 hours using
our simulation environment (see below). For the block model
the simulation takes about 30 seconds.

Based on the temperature variation over time from Fig. 5
and on the two points stated above we decided to use the block
level granularity for simulating the temperatures with HotSpot.
The tradeoff between accuracy and simulation time is
acceptably fair. The maximum temperature difference between
the methods is about 0.5°C.

B. Simulation environment

The simulation environment is composed by the Sniper 5.3
and HotSpot 5.02 simulators and the Splash2 suite of parallel
benchmarks using large Datasets (~3.5 billion dynamic
instructions per benchmark). The simulated microarchitecture
is Intel Nehalem-EP [10], which may include between 1 to 16
cores, each of them running at 2.66GHz. We installed and run
this environment on Ubuntu 13.10, disposing an Intel Quad
Core I7, CPU at 4.4 GHz, with 16 GB RAM and SSD hard
drive. In our evaluation, the simulation time ranges between
414 million and 8293 million cycles for one simulated
configuration, depending on the benchmark and the number of
cores of the Nehalem-EP microarchitecture. Also, the number
of simulated cycles decreases by increasing the number of
cores.

C. Preliminary results

In Fig. 6 it can be seen that the computing performance
measured in instructions per cycle increases along with the
number of cores. This processing speed increase is given
mainly by the programs ability to run on multiple cores. More
exactly, it is given by the parallelizing degree of the concurrent
code portions from the simulated benchmark.

Fig. 6. Performance variation according to number of cores

48

48,2

48,4

48,6

48,8

49

T
im

e
[m

s]

1
0
8

.5

2
1
7

3
2
5

.5

4
3
4

5
4
2

.5

6
5
1

7
5
9

.5

8
6
8

9
7
6

.5

1
0
8

5

1
1
9

3
.5

1
3
0

2

1
4
1

0
.5

1
5
1

9

1
6
2

7
.5

1
7
3

6

T
em

p
er

a
tu

re
 [
°
C

]

Core_0_ExecUnit_GRID_128_HSS
Core_0_ExecUnit_BLOCK_HSS
Core_0_ExecUnit_GRID_128

0

5

10

15

20

P
er

fo
rm

a
n

ce
 [

IP
C

]

1 core 2 cores 4 cores 8 cores 16 cores

34

Therefore, the computing performance can be increased by
parallelising our applications and increasing the number of
cores. Even though the performance is increasing along with
the number of cores, the average IPC/core is decreasing (Fig.
7). This fact occurs due to the application and system
scalability, and the quantity of communication through shared
variables (implied by the communication between cores). In
other words, due to the efficiency of the system, the programs
are executed (in average) faster if more computing resources
are available to run the same program. Also the executed
program needs to have the ability to use more computing
resources in parallel.

Fig. 7. Average IPC/core variation according to number of cores

The formulas used for computing the total power
consumption (Ptotal) and the average power consumption (Pavg)
per core are the following:

	5�6� �	∑ 8∑ 5�9:99;
 <:��;

:�

�=� (5)

	5�>��? � ∑ @∑ 5�9:99A
 B:��A
 �=� (6)

where:

• Nc – the number of cores;

• Nu – the number of functional units within a core (in our
case is 5);

• Pcu – the average dynamic power consumption for
functional unit u from core c.

An interesting fact is that the average dynamic power
consumption per core (Pavg) is decreasing along with the
number of cores (Fig. 8). This fact is well-correlated with the
average IPC/core decrease presented in Fig. 7 (lower
performance per core involves lower power consumption per
core).

Also, in an opposite direction, the total dynamic power
consumption (Ptotal) of the chip is highly increasing along with
the number of cores (Fig. 9). This increase is given by the fact
that we use on the same chip more homogenous resources
(cores) to run our application. This is well-correlated with the
global IPC growth presented in Fig. 6.

Fig. 8. Average power consumption per core according to the cores number

Fig. 9. Total power consumption according to the number of cores

We also determined the total energy consumption of the
simulated microprocessor depending on the simulated
benchmark and the number of cores. The total energy
consumption is defined as follows:

C�>��? � 5D6� ∗ :� ∗ :�E�?�3	�= ∗ F����E�?�3� (7)

where:

• Both Pavg and Nc are defined in equation 5;

• Ncycles –the number of simulated cycles;

Fig. 10. Total energy consumption according to the number of cores

The total energy consumption trend can be observed in Fig.
10 and in average it is slightly increasing along with the
number of cores. It is interesting to observe that comparing
with the global performance, which significantly increases
from one to 16 cores (Fig. 6), the total energy consumption
increases in a modest manner; this represents a positive fact.

0

0,5

1

1,5

2

IP
C

/c
o
re

1 core 2 cores 4 cores 8 cores 16 cores

0

2

4

6

8

10

12

14

A
v
er

a
g

e
p

o
w

er
 [

W
]

1 core 2 cores 4 cores 8 cores 16 cores

0

50

100

150

T
o
ta

l
p

o
w

er
 [

W
]

1 core 2 cores 4 cores 8 cores 16 cores

0

10000

20000

30000

40000

50000

T
o

ta
l

en
er

g
y

[W
*

M
eg

a
C

y
cl

es
]

1 core 2 cores 4 cores 8 cores 16 cores

35

Fig. 11 represents the maximum temperatures of the
simulated chip (containing all cores), at functional unit level.
As the total power consumption increases along with the
number of cores, the average and maximum temperatures
follow this trend. The increase of the total power consumption
is the main factor for the elevated temperatures. The average

temperatures are ranging between 45 and 63 °C.

Fig. 11. Maximum temperatures according to the number of cores

Fig. 12. Increase rates between total power consumption and chip area

Fig. 13. Tmax=f(E) according to the number of cores

The chip total area does not grow at the same rate as the
total power consumption. In Fig. 12 depicts the difference
between the increase rate of the total power consumption and
the chip size. This correlation also has impact over the
temperatures because the heat produced by the chip needs to
dissipate. Therefore, the chip area does not grow as fast as the
total power consumption and the produced heat is dissipated
slower and slower. On the other hand, according to Fig. 6 and
Fig. 9, the total power is consumed in a shorter time along with
the number of cores. This fact directly contributes to the
temperature growth along with the number of cores. However,

the recorded temperatures are under the DTM (dynamic
thermal management) techniques “threshold”.

V. CONCLUSIONS

We enhanced the Sniper multicore simulator with thermal
measurement possibilities using the HotSpot simulator. We
presented a plugin that interacts with Sniper to retrieve
simulation data and calls HotSpot to compute the thermal
results. The plugin also builds a two dimensional floorplan for
the simulated microarchitecture. Based on our preliminary
results we observed that the computing performance can be
increased by parallelizing our applications and increasing the
number of cores. Along with the increasing of the cores
number, the processing performance (IPC) increases, the core-
level average power consumption gets lower, the energy
consumption is slightly higher and the total power consumption
of the chip ramps up together with the temperatures.

Further, we plan to integrate the simulation methodology
presented here into an automatic design space exploration
process using FADSE. We also plan to enhance the HotSpot
plugin with a more accurate and detailed floorplan.

REFERENCES

[1] D. Fetis and P. Michaud, “An evaluation of HotSpot-3.0 block-based
temperature model”, Proceedings of the Fifth Annual Workshop on
Duplicating, Deconstructing, and Debunking. 2006.

[2] W. Huang, K. Sankaranarayanan, R. J. Ribando, M. R. Stan, and K.
Skadron, “An Improved Block-Based Thermal Model in HotSpot-4.0
with Granularity Considerations”, Proceedings of the Workshop on
Duplicating, Deconstructing, and Debunking, 2007.

[3] W. Huang, “HotSpot — A Chip and Package Compact Thermal

Modeling Methodology for VLSI Design”, PhD Thesis; Department of
Electrical and Computer Engineering, University of Virginia, 2007.

[4] W. Heirman, T.E. Carlson, S. Sarkar, P. Ghysels, W. Vanroose, L.
Eeckhout, “Using Fast and Accurate Simulation to Explore
Hardware/Software Trade-offs in the Multi-Core Era”, International
Conference on Parallel Computing, 2011.

[5] P. Michaud, Y. Sazeides, A. Seznec, T. Constantinou, and D. Fetis, “An

analytical model of temperature in microprocessors”, Technical Report
PI-1760/RR-5744, IRISA/INRIA, 2005.

[6] Y. Li, B. Lee, D. Brooks, H. Zhigang, K. Skadron, “Impact of thermal
constraints on multi-core architectures”, Thermal and
Thermomechanical Phenomena in Electronics Systems, 2006.

[7] J. Donald, M. Martonosi, “Techniques for Multicore Thermal
Management: Classification and New Exploration”, The 33rd
International Symposium on Computer Architecture, 2006.

[8] L.S. Anand, “Nehalem - Everything You Need to Know about Intel's
New Architecture” – available at the following address:
http://www.anandtech.com/show/2594/2 (last accessed: 15.03.2014).

[9] “McPAT (Multicore Power, Area, and Timing)” – available at the
following address: http://www.hpl.hp.com/research/mcpat/ (last
accessed: 15.03.2014).

[10] http://en.wikipedia.org/wiki/Gainestown_(microprocessor)#Gainestown

[11] “Floorplanning tool” – available at the following address:
http://lava.cs.virginia.edu/archfp/ (last accessed: 15.03.2014).

[12] [FreeFEM3D – available at the following address:
http://www.freefem.org/ff3d/ (last accessed: 15.03.2014).

[13] H. Calborean, L. Vințan, “An Automatic Design Space Exploration
Framework for Multicore Architecture Optimizations”, The 9th IEEE
RoEduNet International Conference, pp. 202-207, Sibiu, 2010.

[14] L. Sheng, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, N.P.
Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures”, The 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2009

36

