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Abstract—This paper presents the enhancement of the Sniper 

multicore / manycore simulator with thermal measurement 

possibilities using the HotSpot simulator. We present a plugin 

that interacts with Sniper to retrieve simulation data (integration 

areas and power consumptions) and calls HotSpot to compute the 

corresponding thermal results. The plugin also builds a two 

dimensional floorplan for the simulated microarchitecture. 

Furthermore we plan to integrate the simulation methodology 

presented here into an automatic design space exploration 

process using the multi-objective optimization tool called FADSE. 

Keywords—multicore; simulator; power consumption; thermal; 

HotSpot; Sniper 

I.  INTRODUCTION 

Nowadays the voltage supply has significantly decreased 
along with the integration area for everyday microelectronic 
chips. The visible effect of those diminutions can be observed 
in the speed of clock frequency of the chips. The frequency has 
increased a lot over time and this led to the creation of some 
high performance microelectronic chips that can execute our 
programs faster. However, a physical barrier in increasing the 
clock frequency has been encountered. Since the clock 
frequency is getting higher and the chip area smaller, in 
contrast the power consumption density increases. For sure this 
is not an ideal technology scaling. Higher power consumption 
and a smaller chip means that the power needs to dissipate in a 
smaller area and this leads to a “cooking-aware” chip. It means 
that the chip will have very high temperatures and the 
conventional cooling methods (air-cooled heat sink, heat pipe, 
etc.) are not efficient. The temperature is limited to 111.8 

°
C; 

above this threshold the chips start to melt. This is why thermal 
measurement is critical in today’s microprocessor’s design. 

An attempt to mitigate this issue was by introducing the 
multicore systems. Nowadays more CPUs, usually with lower 
frequency, are integrated in one single silicon chip. At first 
were dual core chips (2 cores on a chip), later appeared four 
cores and now we have 64 or more cores for general usage on a 
single silicon chip. As an example, TILE64 is a multicore 
processor produced by Tilera company and has 64 cores on a 
single chip. But the power wall still remains and there are a lot 
of techniques for preventing the chip overheating. For example, 
dynamic voltage and frequency scaling are the most commonly 
used technological solutions for reducing power consumption 
and preventing the chip to overheat. Unfortunately, those 

techniques are implying a reduction in global performance of 
the system. 

These days the temperature metric has gained a ramp up in 
academic research and it is a very active and attractive area of 
investigation. A public open source simulator that was built for 
chip temperature analysis is HotSpot [3] and was developed at 
the University of Virginia by Wei Huang in his PhD 
dissertation under the supervision of Professor Mircea Stan and 
Professor Kevin Skadron (thesis co-advisor). 

The main purpose of this paper is to enhance the Sniper 
multicore simulator [4] with a thermal analysis possibility 
provided by HotSpot. Developing a plugin that interacts with 
Sniper and HotSpot, observing the thermal behavior of the 
simulated microarchitecture along with the chip area, 
performance and energy consumption forms the main goals of 
this paper. Adding temperature measurement possibilities to 
the Sniper simulator will involve for sure more realistic design 
space explorations during the optimization processes. 

The organization of the rest of this paper is as follows. 
Section 2 describes a short theoretical background related to 
thermal analysis of computer microarchitectures, whereas 
Section 3 presents an overview of our plugin. Section 4 
illustrates the simulation methodology and some preliminary 
simulation results. Finally, Section 5 suggests directions for 
future work and concludes the paper. 

II. RELATED WORK 

Thermal measurement is an important metric for nowadays 
microprocessors. Many powerful software applications that 
simulate the thermal behavior of a given microarchitecture over 
time are continuously developed and maintained. 

In [6] the authors show the importance of collaboration 
between the thermal engineering and computer architecture 
communities. It is shown that different thermal constraints 
require different approaches in order to optimize the 
microarchitecture. Various thermal management methods for 
multicore systems were exploited in [7]. One important aspect 
presented in this paper is the necessity of hardware-software 
collaboration for controlling the chip temperatures. 

The most popular simulator for such purpose is HotSpot 
[3]. It contains a block-model method which is based on the 
analogy between electric circuits and heat conduction theory. A 
network of thermal “resistances” and “capacitances” are 
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created internally in order to compute the temperatures. An 
interesting study has been made in [1]. This study compares 
HotSpot with other two thermal simulators that use a different 
approach to compute the temperatures based on power input. 
The first solver is ATMI [5] and it is based on classical 
analytical methods that do not rely on space discretization and 
provides the exact solution. The second solver is FreeFEM3D 
[12], a general purpose finite-element solver that offer 
temperature results “close” to the actual solution. In [1] some 
accuracy issues of HotSpot have been found. The authors show 
that those accuracy issues can occur in some special 
circumstances. Furthermore the accuracy of HotSpot was 
improved in [2] by the authors. Functional blocks are divided 
into sub-blocks in order to obtain a better accuracy, the heat 
transfer between the heatsink and environment is more detailed 
and closer to reality. They also improved the equation used to 
compute the lateral thermal resistance of a block and the 
transient thermal modeling. 

We have not found any studies regarding thermal 
measurements integrated into the Sniper simulator. A step to 
integrate HotSpot in Sniper was made by Wim Heirman, one of 
the Sniper developers. He created a floorplan for a 64-core 
system and called in parallel with Sniper a slightly modified 
version of HotSpot to compute only one time step at a time [4]. 
The HotSpot modification consists in writing out all internal 
temperatures in order to allow the simulation of one time step. 

Our approach is different because we use a more detailed 
and flexible floorplan with a granularity of 5 functional units 
per core instead of a floorplan at a core-level granularity. We 
are interested on which unit from the core the hotspot occurs. 
Another difference is that we call HotSpot after the Sniper 
simulation is finished, not in parallel because the current 
version of HotSpot 5.02 does not officially support this feature. 
Also our plugin automatically generates the floorplan for the 
simulated microarchitecture based on the integration areas 
provided by MCPAT [14] and the number of cores. Due to the 
automatic thermal analysis allowed by the automatic floorplan 
creation, our method is more efficient than the previous 
methods which through manual floorplan creation were limited 
to manual thermal analysis on selected architectural 
configurations. This improvement makes it possible to 
integrate thermal analysis into any automatic design space 
exploration process. Our goal is to achieve a thermal 
qualitative accuracy as high as possible. As far as we know, we 
are the first researchers investigating a 4-D (Performance, 
Energy, Area and Temperature) multi-objective optimization 
approach into a multicore architecture. 

III. INTEGRATION OF HOTSPOT INTO SNIPER AS A PLUGIN 

A. Plugin overview 

Sniper is a fast and accurate simulator for multicore 
microprocessors [4]. This simulator is modeling the Nehalem 
microarchitecture and was validated against this 
microarchitecture. We developed a plugin that calls the 
HotSpot simulator at a certain parameterized time interval (e.g. 
500µs) during the Sniper’s simulation process. The plugin also 
generates the floorplan of the simulated architecture and 
collects averages of dynamic power consumptions for each 
functional unit for the current time interval. An overview of 

how this plugin interacts with Sniper and HotSpot can be seen 
in Fig. 1. 

The HotSpot plugin is developed in the Python 
programming language and it lies in the scripts folder inside 
the Sniper simulator. In order to use it simply add “-s 
hotspot:500000:block” to the Sniper command line. Parameters 
signification: 

• First parameter – “500000”, sets the calling interval of the 
HotSpot plugin in nanoseconds; 

•  Second parameter – “block”, informs the HotSpot simulator 
about the used thermal simulation method (block or grid). 

 

Fig. 1. HotSpot plugin interaction 

The script implements a method that is automatically called 
by the Sniper simulator at a given interval. In this method, the 
MCPAT modeling framework [9] is called and the power 
consumption results are added to the power trace file. After the 
simulation ends the HotSpot simulator is called using the given 
simulation method (block or grid) and the corresponding 
temperature trace is generated. 

We chose the power sampling interval to be 500 
microseconds because the HotSpot authors state that if 
extremely short intervals (e.g. nanoseconds) are used then the 
simulator could produce inaccurate results. They recommend 
sampling intervals at the order of hundreds of microseconds, 
milliseconds or longer. Those values are more in line with 
chip/package thermal time constants. 

B. Challenges 

The main challenges for this topic are the following: 

• How to arrange the CPU functional units (branch predictor, 
caches, execution units, etc.) in a certain floorplan? 

• How to run the HotSpot simulator in parallel with Sniper in 
order to save simulation time? 
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• How to call HotSpot if we analyze a heterogeneous 
architecture where cores have different frequencies or if the 
cores adjust dynamically the frequency? 

C. Building the floorplan 

In order to solve the first challenge we started by answering 
the following question: “How functional units of the Nehalem 
microarchitecture are positioned in a floorplan for one core?” 
The floorplan structure is based on the Nehalem architecture 
described in [8]. In Fig. 2 it can be seen how the functional 
units are positioned inside a core. The positioning is naturally 
justified mainly by the communication distance between the 
components. The distance between the components that 
communicate with each other needs to be as small as possible 
in order to have the smallest communication latency. For 
example, the general purpose CPU registers must be as close as 
possible to the execution units. 

 

Fig. 2. Single-core Nehalem [8] 

We collected all the integration areas obtained with 
MCPAT (integrated out-of-the-box in the Sniper simulator 
package). MCPAT is an integrated power, area, and timing 
modeling framework for multithreaded, multicore and 
manycore architectures [9]. Some functional unit values 
generated by MCPAT also include values regarding functional 
modules interconnections (wires, multiplexers, etc.) that cannot 
be seen in Fig. 2.  

 

Fig. 3. Floorplan associations 

Taking into consideration the pipeline processing phases of 
the microprocessor and the compact presentation of the 
simulation results by Sniper we have merged (as in Fig. 3) the 
following functional units: 

• “Instruction Decode and Microcode” merged together with 
“Branch Prediction” and “Instruction Fetch & Level one 
Instruction Cache” units; 

• “Execution Units” were merged with “Instruction 
Reordering, Scheduling and Retirement”;  

• “Level one Data Cache” merged with “Memory Ordering 
and Execution”. 

The association that we made can be seen in Fig. 3. For the 

power trace generation we compute the sum of the merged 

architectural components into one functional unit component. 

Our plugin automatically generates the floorplan based on the 

areas provided by MCPAT and the number of cores. For a 

microarchitecture with 4 cores the floorplan is created exactly 

like the floorplan presented in Fig. 1. If the simulated 

microarchitecture has more than 4 cores, the first 4 cores are 

placed on the first line and additional cores are placed under 

the last line of cores (maximum 4 cores per line). 

D. HotSpot parameters 

In Fig. 4 it can be seen that the width of microprocessors 
highly increases along with the number of cores. The ALPHA 
21264 microarchitecture has the aspect ratio of the chip equal 
to one (square shape). The aspect ratio of the Nehalem 
microarchitecture is 1.5 (rectangular shape). The width of a 
Nehalem chip is get according to the following formulas: 

���������� � 	
��������

.� ����    (1) 

��������� � ��������
����������
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This fact automatically implies adjusting the heat sink and 
heat spreader size for each configuration individually, in order 
to obtain a better accuracy in thermal simulation. 

 

Fig. 4. Chip width vs. number of cores 

It can be seen that the chip width of the Nehalem 
microarchitecture with 32 cores is about three times higher than 
that of a single-core Nehalem. In other words, it will be harder 
for a smaller heat sink and heat spreader to handle the heat 
transfer of a bigger architecture. 

The heat is transferred from the silicon chip into the heat 
sink via the heat spreader. It is also known from the second law 
of thermodynamics [3] that the heat flows in the direction 
where the temperature decreases. The first law of 
thermodynamics [3] states that the heat produced by a hot 
region has to be equal to the heat absorbed by the cold region. 
Hence the chip area increases significantly along with the 
number of cores and based on the two laws shortly stated 
above, we chose to adjust the heat sink and the heat speeder in 
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the following way. We measured the difference between the 
ALPHA 21264 chip width and the width of the heat spreader 
and heat sink, respectively. 

���������� !"#$"	!#%" � 277% 

	�����()��*�)�� !"#$"	!#%" � 88% 

The following formulas will be applied to the HotSpot 
simulator’s heat sink and heat spreader parameters: 

����-�./����� � ��������� 0 1��������� ∗ ����-�./�.����3�	����4  
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Along with these parameters we also modified the 
following: 

• sampling_interval = calling_interval [s] 

• base_proc_freq = CPUfrequency [Hz] 

where calling_interval [s] is the time interval at which the 
average dynamic power consumption is calculated (e.g. 500µs) 
and CPUfrequency [Hz] is the actual clock frequency for the 
simulated homogenous architecture. 

IV. SIMULATION METHODOLOGY AND EXPERIMENTAL 

RESULTS 

A. Running HotSpot 

The main goal is to get the most accurate thermal results 
with less possible simulation time. Time is a very important 
factor because we plan to run a multi-objective automatic 
design space exploration using FADSE [13], Sniper and 
HotSpot. Targeted objectives are: performance (IPC – 
instructions per cycles), chip area, energy consumption and 
chip temperature. 

HotSpot has two main simulation cases: a block level 
thermal model and a more accurate grid thermal model. The 
second one offers a better accuracy regarding the first thermal 
model but at the cost of processing time. We simulated for 
testing purposes both methods. At the grid model we set the 
granularity of 128 rows and 128 columns. 

 

Fig. 5. Temperature variation over time for FFT benchmark on one core 

Legend interpretation: 

• GRID_128_HSS – simulated with a 128x128 grid and with 
heat sink and spreader adjusted according to chip area; 

• BLOCK_HSS – block level simulation heat sink and 
spreader adjusted according to chip area; 

• GRID_128 – simulated with a 128x128 grid and with the 
default heat sink and spreader parameters. 

Fig. 5 shows that the accuracy provided by the block 
method is between the two grid methods. A simulation with the 
grid model for a 128x128 grid matrix takes about 2 hours using 
our simulation environment (see below). For the block model 
the simulation takes about 30 seconds. 

Based on the temperature variation over time from Fig. 5 
and on the two points stated above we decided to use the block 
level granularity for simulating the temperatures with HotSpot. 
The tradeoff between accuracy and simulation time is 
acceptably fair. The maximum temperature difference between 
the methods is about 0.5°C. 

B. Simulation environment 

The simulation environment is composed by the Sniper 5.3 
and HotSpot 5.02 simulators and the Splash2 suite of parallel 
benchmarks using large Datasets (~3.5 billion dynamic 
instructions per benchmark). The simulated microarchitecture 
is Intel Nehalem-EP [10], which may include between 1 to 16 
cores, each of them running at 2.66GHz. We installed and run 
this environment on Ubuntu 13.10, disposing an Intel Quad 
Core I7, CPU at 4.4 GHz, with 16 GB RAM and SSD hard 
drive. In our evaluation, the simulation time ranges between 
414 million and 8293 million cycles for one simulated 
configuration, depending on the benchmark and the number of 
cores of the Nehalem-EP microarchitecture. Also, the number 
of simulated cycles decreases by increasing the number of 
cores. 

C. Preliminary results 

In Fig. 6 it can be seen that the computing performance 
measured in instructions per cycle increases along with the 
number of cores. This processing speed increase is given 
mainly by the programs ability to run on multiple cores. More 
exactly, it is given by the parallelizing degree of the concurrent 
code portions from the simulated benchmark. 

 

Fig. 6. Performance variation according to number of cores 
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Therefore, the computing performance can be increased by 
parallelising our applications and increasing the number of 
cores. Even though the performance is increasing along with 
the number of cores, the average IPC/core is decreasing (Fig. 
7). This fact occurs due to the application and system 
scalability, and the quantity of communication through shared 
variables (implied by the communication between cores). In 
other words, due to the efficiency of the system, the programs 
are executed (in average) faster if more computing resources 
are available to run the same program. Also the executed 
program needs to have the ability to use more computing 
resources in parallel. 

 

Fig. 7. Average IPC/core variation according to number of cores 

The formulas used for computing the total power 
consumption (Ptotal) and the average power consumption (Pavg) 
per core are the following: 
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where: 

• Nc – the number of cores; 

• Nu – the number of functional units within a core (in our 
case is 5); 

• Pcu – the average dynamic power consumption for 
functional unit u from core c. 

An interesting fact is that the average dynamic power 
consumption per core (Pavg) is decreasing along with the 
number of cores (Fig. 8). This fact is well-correlated with the 
average IPC/core decrease presented in Fig. 7 (lower 
performance per core involves lower power consumption per 
core). 

Also, in an opposite direction, the total dynamic power 
consumption (Ptotal) of the chip is highly increasing along with 
the number of cores (Fig. 9). This increase is given by the fact 
that we use on the same chip more homogenous resources 
(cores) to run our application. This is well-correlated with the 
global IPC growth presented in Fig. 6. 

 

Fig. 8. Average power consumption per core according to the cores number 

 

Fig. 9. Total power consumption according to the number of cores 

We also determined the total energy consumption of the 
simulated microprocessor depending on the simulated 
benchmark and the number of cores. The total energy 
consumption is defined as follows: 

C�>��? � 5D6� ∗ :� ∗ :�E�?�3	�= ∗ F����E�?�3�      (7) 

where: 

• Both Pavg and Nc are defined in equation 5; 

• Ncycles –the number of simulated cycles; 

 

Fig. 10. Total energy consumption according to the number of cores 

The total energy consumption trend can be observed in Fig. 
10 and in average it is slightly increasing along with the 
number of cores. It is interesting to observe that comparing 
with the global performance, which significantly increases 
from one to 16 cores (Fig. 6), the total energy consumption 
increases in a modest manner; this represents a positive fact. 
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Fig. 11 represents the maximum temperatures of the 
simulated chip (containing all cores), at functional unit level. 
As the total power consumption increases along with the 
number of cores, the average and maximum temperatures 
follow this trend. The increase of the total power consumption 
is the main factor for the elevated temperatures. The average 

temperatures are ranging between 45 and 63 °C. 

 
Fig. 11. Maximum temperatures according to the number of cores 

 

Fig. 12. Increase rates between total power consumption and chip area 

 
Fig. 13. Tmax=f(E) according to the number of cores 

The chip total area does not grow at the same rate as the 
total power consumption. In Fig. 12 depicts the difference 
between the increase rate of the total power consumption and 
the chip size. This correlation also has impact over the 
temperatures because the heat produced by the chip needs to 
dissipate. Therefore, the chip area does not grow as fast as the 
total power consumption and the produced heat is dissipated 
slower and slower. On the other hand, according to Fig. 6 and 
Fig. 9, the total power is consumed in a shorter time along with 
the number of cores. This fact directly contributes to the 
temperature growth along with the number of cores. However, 

the recorded temperatures are under the DTM (dynamic 
thermal management) techniques “threshold”. 

V. CONCLUSIONS 

We enhanced the Sniper multicore simulator with thermal 
measurement possibilities using the HotSpot simulator. We 
presented a plugin that interacts with Sniper to retrieve 
simulation data and calls HotSpot to compute the thermal 
results. The plugin also builds a two dimensional floorplan for 
the simulated microarchitecture. Based on our preliminary 
results we observed that the computing performance can be 
increased by parallelizing our applications and increasing the 
number of cores. Along with the increasing of the cores 
number, the processing performance (IPC) increases, the core-
level average power consumption gets lower, the energy 
consumption is slightly higher and the total power consumption 
of the chip ramps up together with the temperatures. 

Further, we plan to integrate the simulation methodology 
presented here into an automatic design space exploration 
process using FADSE. We also plan to enhance the HotSpot 
plugin with a more accurate and detailed floorplan. 
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