
MEMORY WALL – A CRITICAL FACTOR
IN CURRENT HIGH-PERFORMANCE

MICROPROCESSORS
Adrian Florea, Arpad Gellert

“Lucian Blaga” University of Sibiu, Computer Science Department,
Emil Cioran Street, No. 4, 550025 Sibiu, Romania, {adrian.florea, arpad.gellert}@ulbsibiu.ro

Abstract

The memory access time is a critical factor that limits the performance of current microprocessors.
Critical high-latency instructions caused by cache misses can slow a processor well below its peak potential.
Pointer chasing from applications are responsible for reducing the overall processor performance because it
creates a serialization in the execution of long-latency memory operations, inhibiting the overlap. In this paper
we show some statistics on SPEC2000 benchmarks related to critical load instructions (loads that access with
miss the L2 data cache and reached the head of the ROB). We obtained that 29.13% of critical loads appear at a
distance at most 2 instructions. We also determined how many critical load instructions are not overlapping
their access to main memory. In average 10.91% of critical loads are isolated or in front of a group of loads.

Different approaches in overcoming the memory wall

In the last decade processor cycle time has been decreasing at a rate faster than the memory access
time. Additionally, the architectural design of processors has improved with the development of deeper
pipelined and multiple instruction issue architectures. These factors have influenced the increasing
technological gap – named memory wall [3] – between processor speed and the speed of the underlying
memory hierarchy. Thus, in order to improve the performance of memory-intensive application programs,
there are needed innovative techniques to tolerate long-latency main memory accesses.

Recently, different approaches were conducted to design microarchitectures able to overcome the
memory wall by introducing techniques for efficient management of architectural resources (Reorder Buffer
– ROB, register files, instruction queues and load/store queues). Akkary et al. [1] introduced the Checkpoint
Processing and Recovery microarchitecture – ROB-free and requiring only a small number of rename map
checkpoints selectively created at low-confidence branches, while capable of supporting a large instruction
window of the order of thousands of instructions. In [5] the authors propose runahead execution as an
effective way to increase memory latency tolerance in an out-of-order processor, without requiring an
unreasonably large instruction window. Runahead execution unlocks the instruction window blocked by long
latency operations allowing the processor to execute far ahead in the program path. In [4] is proposed a
hybrid mode of execution based on ROB and checkpointing that decouples resource recycling and
instruction retirement – Checkpointed Early Resource Recycling (Cherry). In this approach it is used a single
checkpoint outside the ROB to divide it into two regions: a speculative region and a non-speculative region.
Cherry is then able to early release physical registers and LSQ entries for instructions in the non-speculative
ROB section.

Cristal et al. [3] proposed the Kilo-Instruction Processors (KIP) – a solution to overcome the
increasing gap between processor performance and memory speed. KIP is a new type of out-of-order
superscalar processor that overlaps long memory access delays by maintaining thousand of in-flight
instructions. The traditional approach of scaling up critical processor structures to provide such support is
impractical at these levels, due to area, power, and cycle time constraints. In order to overcome this resource-
scalability problem it was proposed a smarter use of the available resources, supported by a selective
checkpointing mechanism. This mechanism allows instructions to commit out of order, and makes a reorder
buffer unnecessary. KIP is based on a set of techniques such as multilevel instruction queues, late allocation
and early release of registers, and early release of load/store queue entries.

However, KIP performance achieved on integer applications is sometimes limited by pointer chasing
and hard to predict branches. Pointer chasing is even more harmful than hard-to-predict branches, because it
creates a serialization in the execution of long-latency memory operations, inhibiting the overlap. To solve
this problem, value prediction techniques might be useful for predicting the addresses along a pointer chain,
thereby allowing the overlap of these accesses. For memory intensive workloads with heavy pointer chasing,
sequential cache-misses resulting from pointer chasing code structures dominate the overall execution time.
These cache-misses form a memory dependence chain since the address of a missing load is dependent on
the value of the previous missing load. Taking as an example the frequently executed code segment from
refresh_potential function (see below) belonging to mcf benchmark, the profile information shows that the
pointer chasing codes ‘node->child’, ‘node->basic_arc->cost’ and ‘node->pred->potential’ result in many
cache misses [10].

while(node)
{

if(node->orientation == UP)
node->potential = node->basic_arc->cost + node->pred->potential; // (Nodes 1,2,3,4)

else /* == DOWN */
{

node->potential = node->pred->potential - node->basic_arc->cost;
checksum++;

}
tmp = node;
node = node->child; // (Nodes 0, 5)

}

The memory dependence chains formed by these missing loads are shown below (see Figure 1).

1 3

5

2

0

4
Memory dependence
chain for one iteration

1st iteration

2nd iteration

nth iteration

(a) (b)

1 3

5

2

0

4
Memory dependence
chain for one iteration

1 3

5

2

0

4

1 3

5

2

0

4
Memory dependence
chain for one iteration

1st iteration

2nd iteration

nth iteration

1st iteration

2nd iteration

nth iteration

(a) (b)

Figure 1. The memory dependence chain based on the above code.

(a) The dependence chain for a single iteration.
(b) The dependence chain for multiple iterations.

In Figure 1(a), the dependence chain is based on a single iteration of the while loop, where nodes 1

and 2 correspond to two dependent missing loads from ‘node->basic_arc->cost’. Nodes 3 and 4 correspond
to ‘node->pred->potential’. Node 5 corresponds to ‘node->child’ and node 0 is the same load ‘node->child’
from the previous iteration. Figure 1(b) shows the dependence chain when the loop is unrolled multiple
times. The solid arrows in Figure 1 represent the true data dependences and the dashed arrows represent the
alias dependences between missing loads.

The Simulated Architecture and Results

Starting from these challenges we made some analysis based on Simplescalar-3.0 tool set [2]. The
simulated infrastructure is designed to execute Alpha binaries and traces. The baseline cycle accurate

simulator used was the Decoupled Kilo Instruction Processor (DKIP) simulator developed by UPC team for
HPCA-2006 [7]. Figure 2 illustrates the architecture of DKIP. We developed on this structure some own
modules in order to obtain different statistics related to critical load instructions (loads that access with miss
the L2 data cache and reached the head of the ROB). The workbench consists of some computer intensive
integer benchmarks – bzip2, gcc, gzip – and some memory-intensive integer benchmarks – mcf, parser, twolf
and vpr –, selected from SPEC2000 [8]. To perform this job we ran the simulators on SUN machines with
Sparc processors under UNIX operating systems.

Decode
&

Rename

Integer
queue

FP
queue

Register
file

ALU

Reorder buffer (RB)

Integer
queue

FP
queue

Register
file

ALU

Checkpointing stack

Low locality
instruction buffer

Low locality
register file

Load
queue

Store
queue

Store buffer

Cache Processor (out-of-order) Address Processor

Memory Processor (in-order)

Decode
&

Rename

Decode
&

Rename

Integer
queue

FP
queue

FP
queue

Register
file

Register
file

ALUALU

Reorder buffer (RB)

Integer
queue

FP
queue

FP
queue

Register
file

Register
file

ALUALU

Checkpointing stackCheckpointing stack

Low locality
instruction buffer

Low locality
instruction buffer

Low locality
register file
Low locality
register file

Load
queue
Load
queue

Store
queue

Store buffer

Cache Processor (out-of-order) Address Processor

Memory Processor (in-order)

Figure 2. The Decoupled Kilo-Instruction Processor.

We first determined the number of instructions decoded between two load instructions that are
dispatched (loads are moved from the Cache Processor during the writeback stage into the execution units
LQ/SQ of the address processor or into LLIB) [7]. The simulation results show that 2 loads follows one after
another in 27.28% of cases, at average. The operations on dynamic data structures met in applications with
link list, trees or hash tables are responsible for the previous result.

Next, we take statistics between 2 load instructions that access with miss the Data Cache L2 and they
are situated in the head of ROB (critical). The critical loads could be used for a more selective checkpoint
mechanism. We determined the number of instructions that make commit phase between such two
consecutive memory accesses. We obtained that 29.13% of critical loads appear at a distance at most 2
instructions (see Figure 4). We also found how many critical load instructions are not overlapping their
access to main memory. We obtained that in average 10.91% of critical loads are isolated or in front of a
group of loads (see Figure 5).

56.09%

0%

10%

20%

30%

40%

50%

60%

dis
t->

10

dis
t->

20

dis
t->

30

dis
t->

40

dis
t->

50

dis
t->

60

dis
t->

70

dis
t->

80

dis
t->

90

dis
t->

10
0

dis
t->

11
0

dis
t->

12
0

dis
t->

13
0

dis
t->

14
0

dis
t->

15
0

dis
t->

16
0

dis
t->

17
0

dis
t->

18
0

dis
t->

19
0

dis
t->

20
0

Distance

C
rit

ic
al

 L
oa

ds
 [%

]

Figure 3. Average percentage of consecutive critical loads occurred at different distances. Coarse-grained statistics on

SPEC2000 regarding the number of instructions that are committed between consecutive critical loads.

19.16%

9.97%

0%

5%

10%

15%

20%

25%

dist=1 dist=2 dist=3 dist=4 dist=5 dist=6 dist=7 dist=8 dist=9 dist=10

Distance

C
rit

ic
al

 L
oa

ds
 [%

]

Figure 4. Average percentage of consecutive critical loads occurred at different distances. Fine-grained statistics on

SPEC2000 regarding the number of instructions that are committed between consecutive critical loads.

10.91%
13.21%

0%
5%

10%
15%
20%
25%
30%
35%

bz
ip2 gc

c
gz

ip mcf

pa
rse

r
tw

olf vp
r

AM

SPEC2000 CPUInt benchmarks

C
rit

ic
al

 L
oa

ds
 [%

]

mindist=lat
mindist=3/4lat
mindist=1/2lat

Figure 5. Percentage of critical loads without overlapping. Statistics regarding overlapped accesses to main memory of
two critical loads.

In the next step we determined how many instructions are committed between a critical load and the

first dependent load instruction. The simulation results (see Figure 7) show that dependent loads follow
frequently immediately after a critical load (the dependent instruction is the first in 10.46% of cases,
respectively the second in 11.22% of cases, after a critical load).

57.66%

0%

10%

20%

30%

40%

50%

60%

70%

dis
t->

10

dis
t->

20

dis
t->

30

dis
t->

40

dis
t->

50

dis
t->

60

dis
t->

70

dis
t->

80

dis
t->

90

dis
t->

10
0

Figure 6. Average percentage of loads that depend on critical loads. Coarse-grained statistics regarding the number of

instructions that are committed between a critical load and the first dependent load.

10.46%

11.22%

0%

2%

4%

6%

8%

10%

12%

dis
t=1

dis
t=2

dis
t=3

dis
t=4

dis
t=5

dis
t=6

dis
t=7

dis
t=8

dis
t=9

dis
t=10

Distance

D
ep

en
de

nt
 L

oa
ds

 [%
]

Figure 7. Average percentage of loads that depend on critical loads. Fine-grained statistics regarding the number of
instructions that are committed between a critical load and the first dependent load

Further, we compute the percentage of committed critical load instructions and also the percentage of
dependent loads. The frequency of critical loads varies between 3.46% (bzip2) and 45.54% (mcf – natural,
taking into account the Figure 1) with an average of 17.73%. The highest percentage of dependent loads on
mcf and vpr proves that respective benchmarks are characterized by a heavy pointer chasing, and also, their
overall performance is quite limited [5]. Also, it can be observed that, in average, one of six (≈16.93%) load
instructions depends on a critical load. In the case of mcf benchmark, at least 11.90% of dependent loads are
also critical. Except gzip and vpr benchmarks, the percent of dependent loads is greater than that of critical
loads. Since every dependent load has attached only a critical load, likely more than one load instruction
depend on the same critical instruction. Also, it is possible that some of the dependent loads to be even
critical. However, the rest of dependent loads generate hit in the cache hierarchy (L1 or L2) and they would
be quickly executed if the critical loads (address and /or value) would be correctly predicted. Mutlu et al. [6]
proposes a solution for this kind of situations. Exploiting regular memory allocation patterns his value and
address-based prediction technique enables the pre-execution of dependent instructions, including load
instructions that incur long-latency cache misses.

38.14

17.73

45.54

16.93

66.36

0

10

20

30

40

50

60

70

bz
ip2 gc

c
gz

ip mcf

pa
rse

r
tw

olf vp
r

AM

SPEC2000 CPUInt benchmarks

Lo
ad

s
[%

]

Critical loads

Dependent loads

Figure 8. Comparative statistics regarding committed critical loads and dependent loads.

Future Work

Further we’ll continue our research trying to determine how many branches depend on a critical load.
We want to find if these low execution locality branches [7] are unbiased [9] and how we can model branch
predictors dedicated for these branches in KIP. Another idea is based on the feasibility of register/instruction
centered value predictor integrated into KIP.

Acknowledgment

The work has been performed under the Project HPC-EUROPA (RII3-CT-2003-506079), with the
support of the European Community – Research Infrastructure Action under the FP6 “Structuring the
European Research Area” Programme.

Publications
[1] Akkary H., Rajwar R., Srinivasan S.T., Checkpoint Processing and Recovery: Towards Scalable Large

Instruction Window Processors, Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, ACM Press, 2003.

[2] Burger D., Austin T., The SimpleScalar tool set, version 2.0, Technical Report 1342, University of Wisconsin -
Madison Computer Sciences Department, 1997.

[3] Cristal A., Santana O., Cazorla F., Galluzi M., Ramirez T., Pericas M., Valero M., Kilo-Instruction Processors:
Overcoming the Memory Wall, IEEE Micro, Vol. 25, No. 3, 2005.

[4] Martinez J., Renau J., Huang M., Prvulovic M. and J. Torrellas, Cherry: Checkpointed early resource recycling
in out-of-order microprocessors, in Proc. of the 35th Intl. Symposion On Microarchitecture, 2002.

[5] Mutlu O., Stark J., Wilkerson C. and Patt Y.N., Runahead execution: An alternative to very large instruction
windows for out-of-order processors, In Proceedings of the 9th International Symposium on High Performance
Computer Architecture, 2003.

[6] Mutlu O., Kim H., Patt Y., Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns, Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, Barcelona, 2005.

[7] Pericas M., Gonzalez R., Cristal A., Jimenez D., Valero M., A Decoupled KILO-Instruction Processor,
Proceedings of the 12th International Symposium on High Performance Computer Architecture, Austin, Texas,
2006.

[8] SPEC, The SPEC benchmark programs, http://www.spec.org.

[9] Vintan L., Gellert A., Florea A., Oancea M. Egan C., Understanding Prediction Limits Through Unbiased
Branches, submitted to the 11th ACSAC2006, China, 2006.

[10] Zhou Y., Conte T., Enhancing Memory Level Parallelism via Recovery-Free Value Prediction, Proceedings of
the 17th International Conference on Supercomputing, USA, 2003.

