
AN ALTERNATIVE TO BRANCH PREDICTION: PRE-COMPUTED

BRANCHES

Lucian N. VINTAN*, Marius SBERA**, Ioan Z. MIHU*, Adrian FLOREA*

"Lucian Blaga" University of Sibiu, Computer Science Department, Sibiu, ROMANIA
** "S.C. Consultens lnformationstechnik S.R.L. " Sibiu, ROMANIA

E-mail: lucian, vintan(~,maiL ulbsibiu, ro

Abstract: Through this paper we developed an alternative approach to the present - day two level dynamic branch

prediction structures. Instead of predicting branches based on history information, we propose to pre - calculate the branch

outcome. A pre - calculated branch prediction (PCB) determines the outcome of a branch as soon as all of the branch's

operands are known. The instruction that produced the last branch's operand will trigger a supplementary branch condition

estimation and, after this operation, it correspondingly computes the branch outcome. This outcome is cached into a

prediction table. The new proposed PCB algorithm clearly outperforms all the classical branch prediction schemes,

simulations on SPEC and Stanford HSA benchmarks, proving to be very efficient. Also, our investigations related to

architectural complexity and timing costs are quite optimistic, involving an original alternative to the present-day in branch
prediction approach.

Keywords: Multiple Instruction Issue, Pipelining, Dynamic Branch Prediction, Speculative Execution, Execution Driven
Simulation, Performance and Complexity Evaluations

I. Introduction

Excellent branch handling techniques are essential for
current and future advanced microprocessors. These
modem processors are characterized by the fact that many
instructions are in different stages in the pipeline.
Instruction issue also works best with a large instruction
window, leading to even more instructions that are "in
flight" in the pipeline. However, approximately every
seventh instruction in an instruction stream is a branch
instruction which potentially interrupts the instruction flow
through the pipeline [4,5,6,7]. As the pipeline depths and
the issue rates increase, the amount of speculative work
that must be thrown away in the event of a branch
misprediction also increases. Thus, tomorrow's processors
will require even more accurate dynamic branch prediction
to deliver their potential performance [3,14,15,16,17].

Dynamic branch prediction forecast the outcome of
branch instructions at run-time. This forecast, or
prediction, may change for each occurrence of the branch
even the dynamic context is the same. Dynamic branch
predictors are composed of a single level, such as a

classical Branch Target Cache (BTC), or even two levels,
such as the Two-Level Adaptive Branch Predictors
[8,9,10].

A BTC predicts (Taken/Not Taken and the
corresponding Target Address) on the overall past behavior
of the branch. In contrast, a Two-Level Adaptive predictor
bases its prediction on either global history information or
local history information. The first level history records the
outcomes of the most recently executed branches
(correlation information) and the second level history
keeps track of the more likely direction of a branch when a
particular pattern is encountered in the first level history.
Global schemes exploit correlation between the outcome of
the current branch and neighboring branches that were
executed leading to the branch. Local schemes exploit the
outcome of the current branch and its past behavior.
Recently there has been interest in hybrid branch
predictors where the fundamental idea is to combine
different dynamic predictor schemes having different
advantages, in a run-time adaptive manner [13].

- - 2 0 - -

2. T h e P r e - C o m p u t e d B r a n c h A l g o r i t h m

We suggest through this paper an alternative approach to
the present - day dynamic branch prediction schemes.
Instead of predicting based on history information, we
propose to pre - calculate the branch outcome. A pre -
calculated branch (PCB) determines the outcome of a
branch as soon as all of the branch operands are known.
This occurs when the last operand of the branch's
instruction is produced at execution. The instruction that
produced the last operand will trigger supplementary
branch condition estimation and, after this operation, it
correspondingly will compute the branch outcome
(Taken/Not Taken). Similarly to branch history prediction
schemes, branch information is cached into a "prediction"
table (PT), as it will be further presented. Through this
method, excepted the first one, every instance of a branch
can be computed and therefore correctly "predicted",
before their issue.

In our PCB study we used MIPS-I microprocessor's
Instruction Set Architecture (ISA) since a branch
instruction has addressing modes with two register
operands and no immediate operands. Considering for
example the following MIPS - I code sequence:

ADD R9, R5, R7;//R9<-(R5) + (R7)

BNE R9, R8, offset;//if (R9!=R8) PC<-(PC) + offset

The first instruction (ADD) modifies the R9 content
and therefore it directly influences the branch condition.
That means that the ADD instruction will correspondingly
modify R9 content in the branch prediction structures.
After this operation the branch prediction structure
estimates the condition and, at the moment when the
branch instruction itself is encountered, its behavior will be
perfectly known. Figure 1 depicts our new proposed
branch prediction scheme. It uses two tables: the PT table
and an extension of the register file called RU (Register
Unit). As the reader can see further, PC doesn't indexes the
RU table. It is used for some associative searches in PT
table and also, in some certain cases, it will be updated into
the LDPC field. We mention that the letters associated
with the arrows in figures 1, 2 and 3 (a, b, c, d and e)
represents sequential operations.

Each entry in the PT table consists of:
a TAG field (the branch's PC high order bits)
PC1 and PC2 - which are pointers to the last branch's
operands producers (the PCs of the instructions that
produced the branch's operands values)
OPC - the branch's opcode
nOP1 and nOP2 - the register names of the branch
operands
PRED - the branch outcome (Taken or Not-Taken) and
a LRU field (Least Recently Used)
RU table maintains the register file meanings but

additionally, each entry, has two new fields named LDPC
and respectively RC.

21

The "value" field contains the register data value
LDPC - represents the most recent instruction label
(PC) that wrote in that register.
The RC field - is a reference counter that is
incremented by one by each instruction writing in the
attached register and linked by every branch instruction
stored m PT table (therefore the instruction's label is
necessary to be found in PC I or PC2 field). The RC
field is decremented by one when the corresponding
branch instruction is evicted from the PT table.
Therefore, if the RC field attached to a certain register
is '0' it involves that in the PT table there isn't any
branch having that register as a source operand.
In the newly proposed PCB algorithm, the PC of every

non-branch instruction, that modifies at least one register,
is recorded into the LDPC field belonging to its destination
register. The first issue of a particular branch in the
program is predicted with a default value (Not Taken).
After branch's execution, if the outcome was taken, an
entry in the PT table is inserted and the LRU field is
correspondingly updated. The newly added PT entry fields
are filled with the updated information from the branch
itself(PC into TAG, OPC, nOP1, nOP2) and data from the
RU table (LDPC into PC1 or PC2). Every time after a non-
branch instruction - having the corresponding RC field
greater than 0 - is executed, the PT table is searched upon
its PC, in order to find a hit with the PC 1 or PC2 fields (if
RC=0, obviously it isn't any reason for searching the PT
table). When a hit occurs, the branch stored in that PT line
is executed and the corresponding result (taken/not -taken)
is stored into the PRED bit. Next time when the program
reaches again the same branch, the outcome of the branch
is founded in the PT table, as it was previously calculated,
and thus its dire ction it is surely known before branch's
execution. In this way the processor knows for sure which
of the program's path should be further processed. The
only miss-predictions that may arise are coming from the
initial learning (so named compulsory or cold miss-
predictions) or from the fact that PT table has a limited size
and therefore capacity miss-predictions may also occur.

However, the designer must be very careful about the
pipeline timing. There are needed at least one and up to
three cycles, depending on the pipeline length and
structure, between the instructions that alter the registers
and the corresponding branch instructions. This is because
the branch may follow the instruction that produces its
operands too closely in the program flow and thus the
former instruction cannot finish its execution properly. The
branch instruction cannot start its execution right away
because it would trigger a Read after Write (RAW) hazard
and it cannot be used the result from the prediction
structure because it hasn't been yet calculated. So, we
should postpone the branch processing few cycles, allow
the previous instruction to finish and, after this, trigger the
supplementary comparison. The minimum number of
cycles that should separate the instruction that alter the
registers from the corresponding branch instruction,
analogously with the Branch Delay Slot term, we named
PIDS (Producer Instruction Delay Slot). In order to fill this

PIDS we propose some program scheduling techniques,
that will fill this PIDS when necessary, with control
independent instructions (statically or dynamically). This
was proven as being a feasible exciting solution, but we'll
not focused on it during this work. Anyway, the PCB
structure will therefore only help in those cases where the
comparison process can be successfully moved several
instruction slots ahead of the branch, without increasing
the length of the schedule. The proposed PCB technique is
then used if the comparison is far enough ahead, else
conventional prediction might be us ed. Some previous
valuable work about filling the PIDS with control
independent instructions with very optimistic results and
details could be found in [18].

We illustrate the working of this scheme using the
example shown in Figure 2 and Figure 3. The Fig ure 2.A
shows the sequential actions took after the execution of the
instruction from "p l" address. The LDPC field
corresponding to the destination register (R1 here) is filled
with the instruction's PC (p) (the number that follows the
PC label says that is the first encounter of that instruction;
next time it will be 2 and so on). Because the RC field of
the same register is '0' it means we have completed our
actions related to instruction "p". Similar actions are
followed for the instruction having the PC noted "c". After
decoding the "b" branch, the PT table is searched for a hit
on TAG, PC1, PC2 fields (in the "b" set). Due to a miss
(this being the first instance of "b" branch) a default
prediction is used. If after the "p" instruction's execution,
its outcome is taken and a new line in the PT table is
added; also the LRU field is correspondingly updated.

This time when the "p" instruction is issued again
(Figure 3.A) the RC field attached to R1 register is greater
then zero and the PT table is fully searched for a hit on
PC1 or PC2 field. A hit is obtained and it triggers a
supplementary branch execution (after obtaining the
operands values from RU) and the result (taken/not taken)
is correspondingly updated into the PRED field. Similarly
actions are presented in Figure 3.B for the second issue of
the "c" instruction. When the branch itself, about we are
talking, is issued (Figure 3.C) the PT is searched into the
"b" set. This time a hit occurs and the behavior of the
branch "b" is extracted from the PRED field (Taken/Not
Taken). This outcome is 100% accurate, because it has
been correctly calculated in the previous described steps.
For a more in depth understanding of the proposed PCB
algorithm, we have provided a pseudo-code description in
Appendix A.

3. Complexity Costs Evaluations

The global performance of a branch prediction scheme can
be investigated from, at least, two points of view:
prediction accuracy (local performance) and respectively
architectural complexity (costs). The costs themselves can
be split in two parts: the table's sizes and the time spent to
access therlL In order to evaluate the time corresponding to

one branch prediction process (e.g. tables searches,
supplementary branch's condition execution, etc.), we
defined the next time quotas:

TDM -- time needed for one direct mapped table access
(RU)
TEA -- time needed for one frilly-associative table access
(PT)
TSA - - time needed for one set-associative table access (PT)
TEX - time spent for one supplementary branch execution

Also we have considered:

NB -- the number of branch instructions
NNB - - the number of non - branch instructions
NNB = kN*NB, where kN is a statistical constant based on
some program profiling = 7
NNBL -- the number of non - branch instructions "linked"
(through the RC field) with a branch instruction
NNBL=kL*NB, where kL is a statistical constant based on
some program profiling = 5
NNBEX - - the number of non - branch instructions followed
by a "supplementary branch execution"
NNBEX =kex*NB, where k~x is a statistical constant = 1,3
(about 30% branches)

Now, the time spent in the branch evaluation process
for one branch is formed by:

A) Search time spent by a non - branch instruction
NNa*TDM -- needed to check the RC field from RU
Every non - branch instruction that write s into a register
triggers a search into the PT table for a hit with PC1 or
PC2. To reduce these flail table searches we have used
instead this direct mapped table access to check the RC
field (if this instruction is "linked") and proceed to the flail
table search only when the RC is not 0.

B) Search time and execution time needed by a "linked"
non - branch instruction
NNBL*TvA(tn PT)+NNBEx*(TDM0n RU) + TEX), "linked"
instructions search the PT table. When a hit arises, the
operands values are taken from the RU table and an
execution follows (TEx)

C) Search time needed by a branch instruction
NB*(TDM(in Ru)+TsA(in PT)), when a branch is encountered a
search in the PT table is performed to extract the
corresponding prediction computed before

The overall time needed for one branch prediction is:
T= NNB*TDM + NNBL*TFA+NNBEx*(TDM + TEX) +
NB*(TDM+TsA)
T p T = NB*(kN* TDM + kL*TFA+kEx*(TDM + TEX) +
TDM+TsA) (1.1)

The time costs presented above we think that it should
be necessary to be compared with a classic BTB having the

22

same number of rows and a fully associative organization.
For the BTB considered, the time needed to predict a
branch is reduced to search the BTB at every branch
instruction. So, the overall time in this case is TBTB =
NB*TFA (1.2)

Considering common sense values for constants
involved as: kN=7, kL=5 , kex=l,3 and TEA = 4 * TDM, TSA =
1,2 * TDM, the (1.1) and (1.2) equations become:

TpT = NB* TDM * 30,5 +NB* TEX * 1,3
TBTB = NB* TDM * 4

(1.1')
(1.2')

At the first sight the time cost difference needed for
one branch may seem overwhelming, but we think that
other internal processes can hide some of the times from
TpT. So, the times wrote with italic font in the T PT
expression NB*(kN* TDM + kL*TFA+kEx) may over lap with
the next instruction processing or data reuse process and
the TOT expression becomes now:

TpT = NB*(kEx*(ToM + TEX) + TDM+TsA)

Using this new expression we have obtained:

Tvr =NB* TDM * 3,5 +NB* TEX * 1,3
TBTB = NB* TDM * 4

(1.1")
(1.2")

Now the two expressions, in our opinion, are relatively
comparable as processor time spent.

As we have stated above, the actions expressed by the
times wrote with italic fonts in the T PT expression may
overlap with some other actions corresponding to the same
non-branch instruction. While the instruction is executed
(or even reused !) the RU table may be checked for the RC
field and on a hit the PT table searched for PC 1 or PC2
fields. All these operations can be done in parall el because
these actions do not depend on each other, thus they are
hidden into the real processor time consumed. The part
from the TpT expression that cannot yet be hidden is that
which express the times involved in the supplementary
branch execution: accessing the RU table for branch's
operand values and the branch execution. It 's quite obvious
that we cannot offset these actions above the end of the
current instruction's execution, when the instruction's
result is produced. In place of trying to overlap these last
actions with actions over the current instruction we could
overlap them with the next instruction execution if they do
not totally depend on each other. For this purpose we
defined an average overlap probability (OP) which points
out the overlapping degree with the next instruction's
execution. After this (1.1") and (1.2") expressions
becomes:

TpT = NB* TDM * 3,5 +(1-OP)*NB* TEX * 1,3 (1.1 '")
TBTB = NB* TOM * 4 (1.2 '")

23

The improvement brought by this scheme must be paid
some way in costs. As we felt, if timing costs can be
partially reduced by hiding them, the physical costs can
not. Considering a register file RU with 32 registers and a
PT table with M (M = 2 j) entries, the total size, in bits, is:

Dpx=M.[(32-j)/*TAG*/ + 2.32/*PC1 and PC2*/ +
5/*OPC*/ + 2.5/*nOP1 and nOP2*/ + 1/*PRED*/ +
2/*LRU*/] + 32.(32/*LDPC*/+ 2/*RC*/) =
= M.(114-j)+1088

For a corresponding BTB having the features discussed
above:

DBTB = M.[(32-j)/*TAG*/ + 2/*prediction bits*/ +
j/*LRU*/] = M'34

Considering tables (PT and BTB) with 1024 entries, we
have obtained:

DpT = 1024-(114-10)+1088=107584=105KBits and DBTB =
1024"34=34K_Bits

4. P e r f o r m a n c e Evaluat ions through
Simulat ion

The result for this second part of the paper were gather
using a complex simulator built by the authors, on the
kernel of the SimpleScalar simulation tool-set [1], an
execution-driven simulator based upon the MIPS-I
processor's ISA. The benchmarks used falls into two
categories: the Stanford HSA (Hatfield Superscalar
Architecture) benchmarks as described in [4, 11, 16],
recompiled to run on SimpleScalar architecture and the
SPEC '95 benchmark programs [10] having as inputs, the
files listed in Table 1. The benchmarks were run for
maximum 500 millions instructions or to complet ion if
they were shorter.

We performed several experiments to evaluate the
newly proposed scheme. For this we have used table sizes
of 128, 256, 512, 1024, 2048 entries having an
associativity degree of 4. The results obtained on our PCB
scheme were then compared with a BTB prediction
scheme having an equivalent number of entries and two
kinds of associativity degree: full associative and
respectively 4-way set associative. For PCB we performed
two experiments in order to evaluate the two ways of
adding new entries in the PT table. First way is to add an
entry in the PT table only if the branch was taken. The
adopted strategy is to don't fill the table with branches that
have a not-taken behavior (ANT=0). This solution reduces
capacity misses, but we will have supplementary misses
when the branch will be taken (end loop misses). The other
way (ANT=l) is to add taken and not taken branches
preventing the end loop misses. Of course, this will have a
big impact on capacity misses when using small size
tables.

Inserting entries in the PT table only when this is really
necessary performs better on smaller tables because it
reduces the capacity misses. In contrast, considering larger
table sizes, where the capacity misses are not so frequent,
adding every entry in PT reduce the end loop misses. The
next experiment was to compare the newly proposed
scheme (PCB) with similar classical dynamic prediction
schemes. Figure 6 shows the amount of accuracy brought
by the PCB scheme over two BTB schemes. The amount
of "prediction" accuracy brought by the PCB scheme
compared with a corresponding set associative BTB
scheme using SPEC '95 benchmarks, is about 11%. As
depicted in Figure 6, even with a full -associative BTB the
PCB scheme performs better. The difference of accuracy
between the PCB scheme and BTB schemes are even
greater when using the Stanford benchmarks, about 18%,
because these programs are more difficult to predict than
SPEC benchmarks.

5. Conclus ions and Further W o r k

The new proposed PCB algorithm clearly outpe dorms all
the branch prediction schemes because it pre -computes the
branch outcome before the branch will be really processed.
From the pure "prediction" accuracy point of view this
algorithm seems to be almost perfect. Similarly to branch
history prediction schemes, branch information is cached
into a "prediction" table (it doesn't really predict; more
precisely, this table stores the branches behavior). Through
this method, excepted the first one, every instance of a
branch can be computed and therefore correctly
anticipated, before its issue. The improvement in
prediction accuracy brought by this scheme must be paid
some way in timing and costs. Unfortunately, ffthe PCB's
timing can be partially reduced by hiding it through some
overlapping processes, the structural costs can not be
reduced so easy. So, a PCB prediction scheme is about 105
KBits complex comparing with a full associative BTB
scheme having only 34 KBits complexity at the same
number of PT entries (1024 in this case).

As a further work we intend to measure the average
PIDS (in cycles) based on SPEC '2000 benchmarks, and,
as a consequence, trying to develop a software scheduler in
order to fill - where it will be necessary - with some
branch condition independent instructions these PIDS.
Also we'll try to analyze in more depth other overlapping
possibilities in order to reduce the PCB timing and also
investigate the integration of the PCB scheme in some very
powerful processor models, having some advanced
architectural skills like value prediction and dynamic
instruction reuse concepts.

A c k n o w l e d g m e n t s

Our gratitude to Dr. Gordon B. Steven and Dr. Colin
Egan from the University of Hertfordshire, England, for
providing HSA Stanford benchmarks and for their useful
friendship and support relate d to our Computer
Architecture research during many years.

APPENDIX A

We are using the following notations and abbreviations in
this annex:
PC - current instruction address
PC.nOP1 - register name for the first operand
corresponding to the current inst ruction
PC.nOP2 - register name for the second operand
corresponding to the current instruction
PC.OPCODE - instruction opcode corresponding to the
current instruction
dimSet - the number of entries in a set
dimPT - the total number of PT entries
P C m - 1 . . 0 - Least Significant m Bits of the PC
PT (Prediction Table) - set-associative organization after
TAG and fully-associative after PC 1 and PC2
To implement the PCB algorithm we have used the
following helper ftmctions:

FOUND(j) - tests if a previous search in the PT table
finished with success or not
FIND PT ENTRY - it searches the PT table, in the
PC's corresponding set, for a hit on the PC and PC 1 and
PC2 fields. When a hit occurs it returns the index of
that entry in the PT table otherwise -1.
ADD PT ENTRY - records a new entry in the PT
table. The entry to be filled is selected using the
FREE PT ENTRY fimction. If we had R0 as operand
we will perform no decrementing because for the R0
register is useless to consider a RC field (there is no
instruction to ha ve R0 register as destination). Now we
can update the entry with the new data (TAG, PC1,
PC2, nOP1, nOP2, OPC). Finally we have to link this
entry with the corresponding operands by incrementing
the RC field of those registers.
FREE PT ENTRY - Its aim is to find a suitable entry
in the PT table to be, first, evicted and then in that
position to add a new entry.
SCH and UPD PT TABLE - searches the entire PT
table for a hit in the PC 1 or PC2 fields. When a hit
occurs the data stored into that entry (OPC, nOP1,
nOP2) is used to execute a supplementary conditional
operation. The result is then stored back in the PRED
field of the same entry.

START:
O. FETCHINSTR
1.DECODEINSTR
2. IF isBRANCH(PC) THEN //this is a branch
3. IF FOUND(FIND PT ENTRY(PC)) THEN

- - 2 4 w

4. PREDICTION=PT[FIND PT ENTRY(PC)].PRED//100% accuracy
5. ELSE
6. PREDICTION=NotTaken //default prediction
7. IF EXEC BRANCH=TAKEN THEN
8. ADD PT ENTRY(PC)
9.ELSE //not a branch instruction
10. RD.REGVAL=EXEC_INSTR //RD-destination register for the current instruction
11. RD.LDPC=PC
12. ifRD.RC >0 THEN
13. SCH_and_UPD PT TABLE(PC) //search the whole PT table for PC i=PC or PC2=PC

//on hit, update the prediction field of those entries
14. PC=PC+offset
15. [GOTO START]

Next we show the functions implementation

FOUND(j)
IF j<O THEN

RETURN FALSE
ELSE

RETURN TRUE
END //FOUND

//searches for an entry in the PC set with (TAG=PC) and (PCI=PC.nOP1) and (PC2=PC.nOP2)
FIND PT ENTRY(PC)

[stSet=dimSet*PCm.L.d" //first entry in the PC set
[endSet=dimSet*(PCm.L.o+l)] ' //first entry in the PC+I set
WHILE stSet < endSet DO //all this searches overlap

IF (PT[stSet].TAG=PC) AND (PT[stSet].PCI=RU[PC.nOP1].LDPC) THEN
IF NOT PC.OP2 THEN //there is no second operand

RETURN stSet
ELSE //there is a second operand

IF (PT[stSet].PC2=RU[PC.nOP2].LDPC) THEN
RETURN stSet

stSet++
//end while
RETURN - 1

END //FIND PT ENTRY(PC)

//adds an entry in the PT table
ADD PT ENTRY(PC)

IF PT[FREE PT ENTRY(PC)].nOP1 > 0 AND

RU[PT[FREE PT ENTRY(PC)].nOP1].RC > 0 THEN
RU[PT[FREE PT ENTRY(PC)].nOP1].RC--

//if this PT entry was taken and nOP 1 is
not R0
//don't go below 0
//decrement the old refcount

IF PT[FREE PT ENTRY(PC)].nOP2 > 0 AND RU[PT[FREE PT ENTRY(PC)].nOP2].RC > 0 THEN
RU[PT[FREE_PT_ENTRY(PC)].nOP2].RC- //decrement the old refcount

PT[FREE PT ENTRY(PC)].TAG=PC
PT[FREE_PT_ENTRY(PC)].PC 1 =RU[PC .nOP 1].LDPC
PT[FREE PT ENTRY(PC)].nOPI=PC.nOP1
IF PC.OP2 THEN

PT [FREE_PT_ENTRY(PC)] .PC2=RU[PC.nOP2] .LDPC
PT[FREE PT ENTRY(PC)].nOP2=PC.nOP2

ELSE
PT[FREE PT ENTRY(PC)].PC2=-I
PT[FREE PT ENTRY(PC)].nOP2=-I

PT[FREE PT ENTRY(PC)] .OPC=PC.OPCODE
RU[PT[FREE PT ENTRY(PC)].nOP1].RC++ //increment the new refcount

25

IF PC.OP2 THEN
RU[PT[FREE PT ENTRY(PC)].nOP2].RC++

END //ADD PT ENTRY
//increment the new refcount

//full PT table search for PC in PC 1 or PC2 fields
SCH and UPD PT TABLE(PC)

9=0]
//this long time searches may overlap with EXEC_INSTR or data reuse process
WHILE j<dimPT DO

IF (PT[j].PC I=PC) OR (PT[j].PC2=PC) THEN
PT[j].PRED=EXEC(PT[j].OPC, RU[PTD].nOP 1].REGVAL,

RU[PTD].nOP2].REGVAL)
j++

END //SCH andI.JPD PT TABLE

References

[1] The SimpleScalar Tool Set. Technical Report CS-TR-
96-1308, University of Wisconsin-Madison, July, 1996
(www.cs.wisc.edu/,~rnscalar/simplescalar.html)

[2] Vintan L. - Towards a High Performance Neural
Branch Predictor, Proceedings of The International Joint
Conference on Neural Networks - IJCNN '99 (CD-ROM,
ISBN 0-7803-5532-6), Washington DC, USA, 10-16
July, 1999

[3] B. Calder, D. Grunwald, D. Lindsay - Corpus-Based
Static Branch Prediction, ACM Sigplan Notices, vol. 30,
No. 6, pages 79-91, June, 1995, ISBN 0-89791-697-2

[4] L. Vintan - Instruction Level Parallel Processors,
Romanian Academy Publishing House, Bucharest, 2000
(264 pp., in Romanian), ISBN 973 -27-0734-8

[5] G. Steven, C. Egan, L. Vintan - Dynamic Branch
Prediction using Neural Networks, Proceedings of
International Eurornicro Conference DSD '2001,Warsaw,
Poland, September, 2001

[6] G. Steven, C. Egan, W. Shim, L. Vintan - Applying
Caching to Two-Level Adaptive Branch Prediction,
Proceedings of International Euromicro Conference DSD
'2001, Warsaw, Poland, September, 2001

[7] C. Egan, G. Steven, L. Vintan - Quantgfying the
Benefits of Multiple Prediction Stages in Cached Two
Level Adaptive Branch Predictors, Proceedings of
International Conference SBAC-PAD, Brasil, Braslia,
September, 2001

[8] S. Sechrest, C. Lee, Mudge T. - The Role of Adaptivity
in Two-level Adaptive Branch Prediction, 28 th ACM / IEEE
International Symposium on Microarchitecture, November
1995.

[9] T. Yeh, Y.N. Part - Two-Level Adaptive Branch
Prediction, 24 t~ ACM / IEEE International Symposium on
Microarchitecture, November 1991.

[10] T. Yeh, Y.N. Part - Alternative Implementation of
Two-Level Adaptive Branch Prediction, 19 th Annual
International Symposium on Computer Science, May 1995.

[11] G. Steven et al. - A Superscalar Architecture to
Exploit Instruction Level Parallelism, Microprocessors
and Microsystems, No 7, 1997.

[12] SPEC The SPEC benchmark programs
(www.spec.orN

[13] W.F. Wong - Source Level Static Branch
Prediction, The Computer Journal, vol. 42, No.2, 1999

[14] J. Stark, M. Evers, Y. Patt - Variable Length Path
Branch Prediction, ASPLOS VIII 10/98, CA, USA, 1998

[15] M. Evers, S. Patel, R. Chappell, Y. Patt - A n
Analysis of Correlation and Predictability: What Makes
Two Level Branch Prediction Work, ISCA, Barcelona,
June 1998

[16] L. Vintan, C. Egan - Extending Correlation in
Branch Prediction Schemes, Proceedings of 25 th
Euromicro International Conference, Milano, Italy, 8 -10
September, IEEE Computer Society Press, ISBN 0-7695-
0321-7, 1999

[17] L. Vintan - Towards a Powerful Dynamic Branch
Predictor, Romanian Journal of Information Science and
Technology (ROMJIST), vol.3, nr.3, pg.287-301, ISSN:
1453-8245, Romanian Academy, Bucharest, 2000

[18] Collins R. -Exploiting Parallelism in a Superscalar
Architecture, PhD Thesis, University of Hertfordshire,
U.K., 1996

26

[19] Steven G., Egan C., Anguera R., Vintan L. -
Dynamic Branch Prediction using Neural Networks,
Proceedings of International Eurornicro Conference DSD

'2001, ISBN 0-7695-1239-9, Warsaw,
September, 2001 (pg. 178-185)

Poland,

Table 1. Benchmark

Benchmarks
App1u
Apsi
Ccl
Compress95

SPEC '95 benchmarks
Input Inst. Count executed

applu.in 500000000
apsi.in 500000000
lstmt.i 500000000
bigtest.in 500000000

Fpppp
Hydro
Ijpeg
Li
M~rid
Perl
Su2cor
Swim

natoms.in 500000000
hydro2d.in 500000000

500000000 vigo.ppm
*Asp
m d.in
scrabbl.pl
su2cor.in
swim.in

500000000
500000000
500000000
500000000
500000000

Tomcatv tomcatv.in 500000000
Turb3d

Wave5

turb3d.in 500000000

wave5.in 500000000

'ograms and inputs
Stanford lISA benehmarks

Benchmarks Inst. Count executed
fbubble

Ir~ut
Null 875174

fmatrix Null 824443
fperm Null 581099
fpuzzle Null 25271829
fqueens Null 365205
Fsort Null 198305
Ftower Null 459788
Ftree Null 267642

:PC il

:B:

PC:(

Figure I. The new proposed prediction scheme. A) when a non-branch instruction is encountered," B) when a branch instruction is
encountered

27

A:. . . . '~aiue;. ~ : u ~ c:..

:i:p! i:9~ ::r~:!r2:i ~ I' :J ":: :
;: . , 0

: :1
• * : : d o n ~ h i n g ::.

B i! :0:' :o . ~15 0

:::el :,.a.~tl :::r3:.f3frT:..:~ ~e~.]

do nothtng

Figure 2. Example o f the first instance of a particular branch; .4), B) actions took when issuing non-branch instructions; C) actions took
before b l branch execution

:::ip:~:::r~i ~, :mi;2;~::,

a
:!b:Zan:d : r 3 i i g ; t T : ~

,yo o .i

!",0: i
, i 1

:vaitie :i::~DI~C i:RC,! ,,TAGPC1PC2DPCnQPInO~2PREDLRIJ:.
R 0 ~0 ,: 0 I t

J
e 1

:;i~2i~:::i~ne ,:~3~

Figure 3. Example o f the second instance of a particular branch; A), B) actions took when issuing non-branch instructions; C) actions
took before b2 branch execution

m 2 8 m

1

0,98

0,96

0,94

0,92

64 128 256 512 1024 2048

¢ PCBANT=0]

-.D.-- PCB ANT=I I

Figure 4. PCB' s average "prediction" accuracy obtained on Stanford benchmarks

1

0,93

0,~

0,83

0,It

0,73

0,7

IO PCB ANT=0 I
El PCB ANT=I I

I

32x4 64x4 128x4 256x4 512x4

Figure 5. PCB' s average 'prediction" accuracy obtained on SPEC "95 benchmarks

1

0,95,

0,9,

0,85,

0,8,

0,75

0,7,

I
I I CB ANT=0
O BTB set-assoc
Q BTB full-assoc

32x4 64x4 128x4 256x4 512x4

Figure 6. Average "prediction" accuracies obtained on SPEC '95 benchmarks

29

