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Abstract:  Through this paper we developed an alternative approach to the present - day two level dynamic branch 

prediction structures. Instead of  predicting branches based on history information, we propose to pre - calculate the branch 

outcome. A pre - calculated branch prediction (PCB) determines the outcome of  a branch as soon as all of  the branch's 

operands are known. The instruction that produced the last branch's operand will trigger a supplementary branch condition 

estimation and, after this operation, it correspondingly computes the branch outcome. This outcome is cached into a 

prediction table. The new proposed PCB algorithm clearly outperforms all the classical branch prediction schemes, 

simulations on SPEC and Stanford HSA benchmarks, proving to be very efficient. Also, our investigations related to 

architectural complexity and timing costs are quite optimistic, involving an original alternative to the present-day in branch 
prediction approach. 
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I. Introduction 

Excellent branch handling techniques are essential for 
current and future advanced microprocessors. These 
modem processors are characterized by the fact that many 
instructions are in different stages in the pipeline. 
Instruction issue also works best with a large instruction 
window, leading to even more instructions that are "in 
flight" in the pipeline. However, approximately every 
seventh instruction in an instruction stream is a branch 
instruction which potentially interrupts the instruction flow 
through the pipeline [4,5,6,7]. As the pipeline depths and 
the issue rates increase, the amount of speculative work 
that must be thrown away in the event of  a branch 
misprediction also increases. Thus, tomorrow's processors 
will require even more accurate dynamic branch prediction 
to deliver their potential performance [3,14,15,16,17]. 

Dynamic branch prediction forecast the outcome of  
branch instructions at run-time. This forecast, or 
prediction, may change for each occurrence of  the branch 
even the dynamic context is the same. Dynamic branch 
predictors are composed of  a single level, such as a 

classical Branch Target Cache (BTC), or even two levels, 
such as the Two-Level Adaptive Branch Predictors 
[8,9,10]. 

A BTC predicts (Taken/Not Taken and the 
corresponding Target Address) on the overall past behavior 
of the branch. In contrast, a Two-Level Adaptive predictor 
bases its prediction on either global history information or 
local history information. The first level history records the 
outcomes of  the most recently executed branches 
(correlation information) and the second level history 
keeps track of  the more likely direction of  a branch when a 
particular pattern is encountered in the first level history. 
Global schemes exploit correlation between the outcome of  
the current branch and neighboring branches that were 
executed leading to the branch. Local schemes exploit the 
outcome of the current branch and its past behavior. 
Recently there has been interest in hybrid branch 
predictors where the fundamental idea is to combine 
different dynamic predictor schemes having different 
advantages, in a run-time adaptive manner [ 13]. 
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2. T h e  P r e  - C o m p u t e d  B r a n c h  A l g o r i t h m  

We suggest through this paper an alternative approach to 
the present - day dynamic branch prediction schemes. 
Instead of predicting based on history information, we 
propose to pre - calculate the branch outcome. A pre - 
calculated branch (PCB) determines the outcome of a 
branch as soon as all of  the branch operands are known. 
This occurs when the last operand of the branch's 
instruction is produced at execution. The instruction that 
produced the last operand will trigger supplementary 
branch condition estimation and, after this operation, it 
correspondingly will compute the branch outcome 
(Taken/Not Taken). Similarly to branch history prediction 
schemes, branch information is cached into a "prediction" 
table (PT), as it will be further presented. Through this 
method, excepted the first one, every instance of a branch 
can be computed and therefore correctly "predicted", 
before their issue. 

In our PCB study we used MIPS-I microprocessor's 
Instruction Set Architecture (ISA) since a branch 
instruction has addressing modes with two register 
operands and no immediate operands. Considering for 
example the following MIPS - I  code sequence: 

ADD R9, R5, R7;//R9<-(R5) + (R7) 

BNE R9, R8, offset;//if (R9!=R8) PC<-(PC) + offset 

The first instruction (ADD) modifies the R9 content 
and therefore it directly influences the branch condition. 
That means that the ADD instruction will correspondingly 
modify R9 content in the branch prediction structures. 
After this operation the branch prediction structure 
estimates the condition and, at the moment when the 
branch instruction itself is encountered, its behavior will be 
perfectly known. Figure 1 depicts our new proposed 
branch prediction scheme. It uses two tables: the PT table 
and an extension of the register file called RU (Register 
Unit). As the reader can see further, PC doesn't indexes the 
RU table. It is used for some associative searches in PT 
table and also, in some certain cases, it will be updated into 
the LDPC field. We mention that the letters associated 
with the arrows in figures 1, 2 and 3 (a, b, c, d and e) 
represents sequential operations. 

Each entry in the PT table consists of: 
a TAG field (the branch's PC high order bits) 
PC1 and PC2 - which are pointers to the last branch's 
operands producers (the PCs of the instructions that 
produced the branch's operands values) 
OPC - the branch's opcode 
nOP1 and nOP2 - the register names of the branch 
operands 
PRED - the branch outcome (Taken or Not-Taken) and 
a LRU field (Least Recently Used) 
RU table maintains the register file meanings but 

additionally, each entry, has two new fields named LDPC 
and respectively RC. 

21 

The "value" field contains the register data value 
LDPC - represents the most recent instruction label 
(PC) that wrote in that register. 
The RC field - is a reference counter that is 
incremented by one by each instruction writing in the 
attached register and linked by every branch instruction 
stored m PT table (therefore the instruction's label is 
necessary to be found in PC I or PC2 field). The RC 
field is decremented by one when the corresponding 
branch instruction is evicted from the PT table. 
Therefore, if the RC field attached to a certain register 
is '0'  it involves that in the PT table there isn't any 
branch having that register as a source operand. 
In the newly proposed PCB algorithm, the PC of every 

non-branch instruction, that modifies at least one register, 
is recorded into the LDPC field belonging to its destination 
register. The first issue of a particular branch in the 
program is predicted with a default value (Not Taken ). 
After branch's execution, if the outcome was taken, an 
entry in the PT table is inserted and the LRU field is 
correspondingly updated. The newly added PT entry fields 
are filled with the updated information from the branch 
itself(PC into TAG, OPC, nOP1, nOP2) and data from the 
RU table (LDPC into PC1 or PC2). Every time after a non- 
branch instruction - having the corresponding RC field 
greater than 0 - is executed, the PT table is searched upon 
its PC, in order to find a hit with the PC 1 or PC2 fields (if 
RC=0, obviously it isn't any reason for searching the PT 
table). When a hit occurs, the branch stored in that PT line 
is executed and the corresponding result (taken/not -taken) 
is stored into the PRED bit. Next time when the program 
reaches again the same branch, the outcome of the branch 
is founded in the PT table, as it was previously calculated, 
and thus its dire ction it is surely known before branch's 
execution. In this way the processor knows for sure which 
of the program's path should be further processed. The 
only miss-predictions that may arise are coming from the 
initial learning (so named compulsory or cold miss- 
predictions) or from the fact that PT table has a limited size 
and therefore capacity miss-predictions may also occur. 

However, the designer must be very careful about the 
pipeline timing. There are needed at least one and up to 
three cycles, depending on the pipeline length and 
structure, between the instructions that alter the registers 
and the corresponding branch instructions. This is because 
the branch may follow the instruction that produces its 
operands too closely in the program flow and thus the 
former instruction cannot finish its execution properly. The 
branch instruction cannot start its execution right away 
because it would trigger a Read after Write (RAW) hazard 
and it cannot be used the result from the prediction 
structure because it hasn't been yet calculated. So, we 
should postpone the branch processing few cycles, allow 
the previous instruction to finish and, after this, trigger the 
supplementary comparison. The minimum number of  
cycles that should separate the instruction that alter the 
registers from the corresponding branch instruction, 
analogously with the Branch Delay Slot term, we named 
PIDS (Producer Instruction Delay Slot). In order to fill this 



PIDS we propose some program scheduling techniques, 
that will fill this PIDS when necessary, with control 
independent instructions (statically or dynamically). This 
was proven as being a feasible exciting solution, but we'll 
not focused on it during this work. Anyway, the PCB 
structure will therefore only help in those cases where the 
comparison process can be successfully moved several 
instruction slots ahead of  the branch, without increasing 
the length of the schedule. The proposed PCB technique is 
then used if the comparison is far enough ahead, else 
conventional prediction might be us ed. Some previous 
valuable work about filling the PIDS with control 
independent instructions with very optimistic results and 
details could be found in [18]. 

We illustrate the working of this scheme using the 
example shown in Figure 2 and Figure 3. The Fig ure 2.A 
shows the sequential actions took after the execution of the 
instruction from "p l"  address. The LDPC field 
corresponding to the destination register (R1 here) is filled 
with the instruction's PC (p) (the number that follows the 
PC label says that is the first encounter of  that instruction; 
next time it will be 2 and so on). Because the RC field of  
the same register is '0'  it means we have completed our 
actions related to instruction "p". Similar actions are 
followed for the instruction having the PC noted "c". After 
decoding the "b" branch, the PT table is searched for a hit 
on TAG, PC1, PC2 fields (in the "b" set). Due to a miss 
(this being the first instance of "b" branch) a default 
prediction is used. If after the "p" instruction's execution, 
its outcome is taken and a new line in the PT table is 
added; also the LRU field is correspondingly updated. 

This time when the "p" instruction is issued again 
(Figure 3.A) the RC field attached to R1 register is greater 
then zero and the PT table is fully searched for a hit on 
PC1 or PC2 field. A hit is obtained and it triggers a 
supplementary branch execution (after obtaining the 
operands values from RU) and the result (taken/not taken) 
is correspondingly updated into the PRED field. Similarly 
actions are presented in Figure 3.B for the second issue of  
the "c" instruction. When the branch itself, about we are 
talking, is issued (Figure 3.C) the PT is searched into the 
"b" set. This time a hit occurs and the behavior of the 
branch "b" is extracted from the PRED field (Taken/Not 
Taken). This outcome is 100% accurate, because it has 
been correctly calculated in the previous described steps. 
For a more in depth understanding of the proposed PCB 
algorithm, we have provided a pseudo-code description in 
Appendix A. 

3. Complexity Costs Evaluations 

The global performance of  a branch prediction scheme can 
be investigated from, at least, two points of view: 
prediction accuracy (local performance) and respectively 
architectural complexity (costs). The costs themselves can 
be split in two parts: the table's sizes and the time spent to 
access therlL In order to evaluate the time corresponding to 

one branch prediction process (e.g. tables searches, 
supplementary branch's condition execution, etc.), we 
defined the next time quotas: 

TDM -- time needed for one direct mapped table access 
(RU) 
TEA -- time needed for one frilly-associative table access 
(PT) 
TSA - -  time needed for one set-associative table access (PT) 
TEX - time spent for one supplementary branch execution 

Also we have considered: 

NB -- the number of  branch instructions 
NNB - -  the number of non - branch instructions 
NNB = kN*NB, where kN is a statistical constant based on 
some program profiling = 7 
NNBL -- the number of non - branch instructions "linked" 
(through the RC field) with a branch instruction 
NNBL=kL*NB, where kL is a statistical constant based on 
some program profiling = 5 
NNBEX - -  the number of  non - branch instructions followed 
by a "supplementary branch execution" 
NNBEX =kex*NB, where k~x is a statistical constant = 1,3 
(about 30% branches) 

Now, the time spent in the branch evaluation process 
for one branch is formed by: 

A) Search time spent by a non - branch instruction 
NNa*TDM -- needed to check the RC field from RU 
Every non - branch instruction that write s into a register 
triggers a search into the PT table for a hit with PC1 or 
PC2. To reduce these flail table searches we have used 
instead this direct mapped table access to check the RC 
field (if this instruction is "linked") and proceed to the flail 
table search only when the RC is not 0. 

B) Search time and execution time needed by a "linked" 
non - branch instruction 
NNBL*TvA(tn PT)+NNBEx*(TDM0n RU) + TEX), "linked" 
instructions search the PT table. When a hit arises, the 
operands values are taken from the RU table and an 
execution follows (TEx) 

C) Search time needed by a branch instruction 
NB*(TDM(in Ru)+TsA(in PT)), when a branch is encountered a 
search in the PT table is performed to extract the 
corresponding prediction computed before 

The overall time needed for one branch prediction is: 
T= NNB*TDM + NNBL*TFA+NNBEx*(TDM + TEX) + 
NB*(TDM+TsA) 
T p T  = NB*(kN* TDM + kL*TFA+kEx*(TDM + TEX) + 
TDM+TsA) (1.1) 

The time costs presented above we think that it should 
be necessary to be compared with a classic BTB having the 
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same number of  rows and a fully associative organization. 
For the BTB considered, the time needed to predict a 
branch is reduced to search the BTB at every branch 
instruction. So, the overall time in this case is TBTB = 
NB*TFA (1.2) 

Considering common sense values for constants 
involved as: kN=7, kL=5 , kex=l,3 and TEA = 4 * TDM, TSA = 
1,2 * TDM, the (1.1) and (1.2) equations become: 

TpT = NB* TDM * 30,5 +NB* TEX * 1,3 
TBTB = NB* TDM * 4 

(1.1') 
(1.2') 

At the first sight the time cost difference needed for 
one branch may seem overwhelming, but we think that 
other internal processes can hide some of the times from 
TpT. So, the times wrote with italic font in the T PT 
expression NB*(kN* TDM + kL*TFA+kEx) may  over lap with 
the next instruction processing or data reuse process and 
the TOT expression becomes now: 

TpT = NB*(kEx*(ToM + TEX) + TDM+TsA) 

Using this new expression we have obtained: 

Tvr =NB* TDM * 3,5 +NB* TEX * 1,3 
TBTB = NB* TDM * 4 

(1.1") 
(1.2") 

Now the two expressions, in our opinion, are relatively 
comparable as processor time spent. 

As we have stated above, the actions expressed by the 
times wrote with italic fonts in the T PT expression may 
overlap with some other actions corresponding to the same 
non-branch instruction. While the instruction is executed 
(or even reused !) the RU table may be checked for the RC 
field and on a hit the PT table searched for PC 1 or PC2 
fields. All these operations can be done in parall el because 
these actions do not depend on each other, thus they are 
hidden into the real processor time consumed. The part 
from the TpT expression that cannot yet be hidden is that 
which express the times involved in the supplementary 
branch execution: accessing the RU table for branch's 
operand values and the branch execution. It 's  quite obvious 
that we cannot offset these actions above the end of the 
current instruction's execution, when the instruction's 
result is produced. In place of  trying to overlap these last 
actions with actions over the current instruction we could 
overlap them with the next instruction execution if they do 
not totally depend on each other. For this purpose we 
defined an average overlap probability (OP) which points 
out the overlapping degree with the next instruction's 
execution. After this (1.1") and (1.2") expressions 
becomes: 

TpT = NB* TDM * 3,5 +(1-OP)*NB* TEX * 1,3 (1.1 '")  
TBTB = NB* TOM * 4 (1.2 '")  
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The improvement brought by this scheme must be paid 
some way in costs. As we felt, if  timing costs can be 
partially reduced by hiding them, the physical costs can 
not. Considering a register file RU with 32 registers and a 
PT table with M (M = 2 j) entries, the total size, in bits, is: 

Dpx=M.[(32-j)/*TAG*/ + 2.32/*PC1 and PC2*/ + 
5/*OPC*/ + 2.5/*nOP1 and nOP2*/ + 1/*PRED*/ + 
2/*LRU*/] + 32.(32/*LDPC*/+ 2/*RC*/) = 
= M.(114-j)+1088 

For a corresponding BTB having the features discussed 
above: 

DBTB = M.[(32-j)/*TAG*/ + 2/*prediction bits*/ + 
j/*LRU*/] = M'34 

Considering tables (PT and BTB) with 1024 entries, we 
have obtained: 

DpT = 1024-(114-10)+1088=107584=105KBits and DBTB = 
1024"34=34K_Bits 

4. P e r f o r m a n c e  Evaluat ions  through 
Simulat ion  

The result for this second part of  the paper were gather 
using a complex simulator built by the authors, on the 
kernel of  the SimpleScalar simulation tool-set [1], an 
execution-driven simulator based upon the MIPS-I  
processor's ISA. The benchmarks used falls into two 
categories: the Stanford HSA (Hatfield Superscalar 
Architecture) benchmarks as described in [4, 11, 16], 
recompiled to run on SimpleScalar architecture and the 
SPEC '95 benchmark programs [10] having as inputs, the 
files listed in Table 1. The benchmarks were run for 
maximum 500 millions instructions or to complet ion if 
they were shorter. 

We performed several experiments to evaluate the 
newly proposed scheme. For this we have used table sizes 
of  128, 256, 512, 1024, 2048 entries having an 
associativity degree of 4. The results obtained on our PCB 
scheme were then compared with a BTB prediction 
scheme having an equivalent number of  entries and two 
kinds of associativity degree: full associative and 
respectively 4-way set associative. For PCB we performed 
two experiments in order to evaluate the two ways of 
adding new entries in the PT table. First way is to add an 
entry in the PT table only if the branch was taken. The 
adopted strategy is to don't fill the table with branches that 
have a not-taken behavior (ANT=0). This solution reduces 
capacity misses, but we will have supplementary misses 
when the branch will be taken (end loop misses). The other 
way (ANT=l) is to add taken and not taken branches 
preventing the end loop misses. Of  course, this will have a 
big impact on capacity misses when using small size 
tables. 



Inserting entries in the PT table only when this is really 
necessary performs better on smaller tables because it 
reduces the capacity misses. In contrast, considering larger 
table sizes, where the capacity misses are not so frequent, 
adding every entry in PT reduce the end loop misses. The 
next experiment was to compare the newly proposed 
scheme (PCB) with similar classical dynamic prediction 
schemes. Figure 6 shows the amount of  accuracy brought 
by the PCB scheme over two BTB schemes. The amount 
of "prediction" accuracy brought by the PCB scheme 
compared with a corresponding set associative BTB 
scheme using SPEC '95 benchmarks, is about 11%. As 
depicted in Figure 6, even with a full -associative BTB the 
PCB scheme performs better. The difference of accuracy 
between the PCB scheme and BTB schemes are even 
greater when using the Stanford benchmarks, about 18%, 
because these programs are more difficult to predict than 
SPEC benchmarks. 

5. Conclus ions  and Further  W o r k  

The new proposed PCB algorithm clearly outpe dorms all 
the branch prediction schemes because it pre -computes the 
branch outcome before the branch will be really processed. 
From the pure "prediction" accuracy point of view this 
algorithm seems to be almost perfect. Similarly to branch 
history prediction schemes, branch information is cached 
into a "prediction" table (it doesn't really predict; more 
precisely, this table stores the branches behavior). Through 
this method, excepted the first one, every instance of a 
branch can be computed and therefore correctly 
anticipated, before its issue. The improvement in 
prediction accuracy brought by this scheme must be paid 
some way in timing and costs. Unfortunately, ffthe PCB's 
timing can be partially reduced by hiding it through some 
overlapping processes, the structural costs can not be 
reduced so easy. So, a PCB prediction scheme is about 105 
KBits complex comparing with a full associative BTB 
scheme having only 34 KBits complexity at the same 
number of  PT entries (1024 in this case). 

As a further work we intend to measure the average 
PIDS (in cycles) based on SPEC '2000 benchmarks, and, 
as a consequence, trying to develop a software scheduler in 
order to fill - where it will be necessary - with some 
branch condition independent instructions these PIDS. 
Also we'll try to analyze in more depth other overlapping 
possibilities in order to reduce the PCB timing and also 
investigate the integration of  the PCB scheme in some very 
powerful processor models, having some advanced 
architectural skills like value prediction and dynamic 
instruction reuse concepts. 
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APPENDIX A 

We are using the following notations and abbreviations in 
this annex: 
PC - current instruction address 
PC.nOP1 - register name for the first operand 
corresponding to the current inst ruction 
PC.nOP2 - register name for the second operand 
corresponding to the current instruction 
PC.OPCODE - instruction opcode corresponding to the 
current instruction 
dimSet - the number of entries in a set 
dimPT - the total number of  PT entries 
P C m - 1 . . 0  - Least Significant m Bits of  the PC 
PT (Prediction Table) - set-associative organization after 
TAG and fully-associative after PC 1 and PC2 
To implement the PCB algorithm we have used the 
following helper ftmctions: 

FOUND(j) - tests if a previous search in the PT table 
finished with success or not 
FIND PT ENTRY - it searches the PT table, in the 
PC's corresponding set, for a hit on the PC and PC 1 and 
PC2 fields. When a hit occurs it returns the index of  
that entry in the PT table otherwise -1. 
ADD PT ENTRY - records a new entry in the PT 
table. The entry to be filled is selected using the 
FREE PT ENTRY fimction. If  we had R0 as operand 
we will perform no decrementing because for the R0 
register is useless to consider a RC field (there is no 
instruction to ha ve R0 register as destination). Now we 
can update the entry with the new data (TAG, PC1, 
PC2, nOP1, nOP2, OPC). Finally we have to link this 
entry with the corresponding operands by incrementing 
the RC field of  those registers. 
FREE PT ENTRY - Its aim is to find a suitable entry 
in the PT table to be, first, evicted and then in that 
position to add a new entry. 
SCH and UPD PT TABLE - searches the entire PT 
table for a hit in the PC 1 or PC2 fields. When a hit 
occurs the data stored into that entry (OPC, nOP1, 
nOP2) is used to execute a supplementary conditional 
operation. The result is then stored back in the PRED 
field of the same entry. 

START: 
O. FETCHINSTR 
1.DECODEINSTR 
2. IF isBRANCH(PC) THEN //this is a branch 
3. IF FOUND(FIND PT ENTRY(PC)) THEN 
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4. PREDICTION=PT[FIND PT ENTRY(PC)].PRED//100% accuracy 
5. ELSE 
6. PREDICTION=NotTaken //default prediction 
7. IF EXEC BRANCH=TAKEN THEN 
8. ADD PT ENTRY(PC) 
9.ELSE //not a branch instruction 
10. RD.REGVAL=EXEC_INSTR //RD-destination register for the current instruction 
11. RD.LDPC=PC 
12. ifRD.RC >0 THEN 
13. SCH_and_UPD PT TABLE(PC) //search the whole PT table for PC i=PC or PC2=PC 

//on hit, update the prediction field of those entries 
14. PC=PC+offset 
15. [GOTO START] 

Next we show the functions implementation 

FOUND(j) 
IF j<O THEN 

RETURN FALSE 
ELSE 

RETURN TRUE 
END //FOUND 

//searches for an entry in the PC set with (TAG=PC) and (PCI=PC.nOP1) and (PC2=PC.nOP2) 
FIND PT ENTRY(PC) 

[stSet=dimSet*PCm.L.d" //first entry in the PC set 
[endSet=dimSet*(PCm.L.o+l)] ' //first entry in the PC+I set 
WHILE stSet < endSet DO //all this searches overlap 

IF (PT[stSet].TAG=PC) AND (PT[stSet].PCI=RU[PC.nOP1].LDPC) THEN 
IF NOT PC.OP2 THEN //there is no second operand 

RETURN stSet 
ELSE //there is a second operand 

IF (PT[stSet].PC2=RU[PC.nOP2].LDPC) THEN 
RETURN stSet 

stSet++ 
//end while 
RETURN - 1 

END //FIND PT ENTRY(PC) 

//adds an entry in the PT table 
ADD PT ENTRY(PC) 

IF PT[FREE PT ENTRY(PC)].nOP1 > 0 AND 

RU[PT[FREE PT ENTRY(PC)].nOP1].RC > 0 THEN 
RU[PT[FREE PT ENTRY(PC)].nOP1].RC-- 

//if this PT entry was taken and nOP 1 is 
not R0 
//don't go below 0 
//decrement the old refcount 

IF PT[FREE PT ENTRY(PC)].nOP2 > 0 AND RU[PT[FREE PT ENTRY(PC)].nOP2].RC > 0 THEN 
RU[PT[FREE_PT_ENTRY(PC)].nOP2].RC- //decrement the old refcount 

PT[FREE PT ENTRY(PC)].TAG=PC 
PT[FREE_PT_ENTRY(PC)].PC 1 =RU[PC .nOP 1 ].LDPC 
PT[FREE PT ENTRY(PC)].nOPI=PC.nOP1 
IF PC.OP2 THEN 

PT [FREE_PT_ENTRY(PC)] .PC2=RU[PC.nOP2] .LDPC 
PT[FREE PT ENTRY(PC)].nOP2=PC.nOP2 

ELSE 
PT[FREE PT ENTRY(PC)].PC2=-I 
PT[FREE PT ENTRY(PC)].nOP2=-I 

PT[FREE PT ENTRY(PC)] .OPC=PC.OPCODE 
RU[PT[FREE PT ENTRY(PC)].nOP1].RC++ //increment the new refcount 
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IF PC.OP2 THEN 
RU[PT[FREE PT ENTRY(PC)].nOP2].RC++ 

END //ADD PT ENTRY 
//increment the new refcount 

//full PT table search for PC in PC 1 or PC2 fields 
SCH and UPD PT TABLE(PC) 

9=0] 
//this long time searches may overlap with EXEC_INSTR or data reuse process 
WHILE j<dimPT DO 

IF (PT[j].PC I=PC) OR (PT[j].PC2=PC) THEN 
PT[j].PRED=EXEC(PT[j].OPC, RU[PTD].nOP 1 ].REGVAL, 

RU[PTD ].nOP2].REGVAL) 
j++ 

END //SCH andI.JPD PT TABLE 
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Poland, 

Table 1. Benchmark 

Benchmarks 
App1u 
Apsi 
Ccl 
Compress95 

SPEC '95 benchmarks 
Input Inst. Count executed 

applu.in 500000000 
apsi.in 500000000 
lstmt.i 500000000 
bigtest.in 500000000 

Fpppp 
Hydro 
Ijpeg 
Li 
M~rid 
Perl 
Su2cor 
Swim 

natoms.in 500000000 
hydro2d.in 500000000 

500000000 vigo.ppm 
*Asp 
m d.in 
scrabbl.pl 
su2cor.in 
swim.in 

500000000 
500000000 
500000000 
500000000 
500000000 

Tomcatv tomcatv.in 500000000 
Turb3d 

Wave5 

turb3d.in 500000000 

wave5.in 500000000 

'ograms and inputs 
Stanford lISA benehmarks 

Benchmarks Inst. Count executed 
fbubble 

Ir~ut 
Null 875174 

fmatrix Null 824443 
fperm Null 581099 
fpuzzle Null 25271829 
fqueens Null 365205 
Fsort Null 198305 
Ftower Null 459788 
Ftree Null 267642 

:PC il 

:B: 

PC:( 

Figure I. The new proposed prediction scheme. A) when a non-branch instruction is encountered," B) when a branch instruction is 
encountered 
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Figure 2. Example o f  the first instance of  a particular branch; .4), B) actions took when issuing non-branch instructions; C) actions took 
before b l branch execution 

:::ip:~:::r~i ~, :mi;2;~::, 

a 
:!b:Zan:d : r 3 i i g ; t T :  ~ 

,yo o .i 

!",0: i 
, i 1 

:vaitie :i::~DI~C i:RC,! ,,TAGPC1PC2DPCnQPInO~2PREDLRIJ:. 
R 0  ~0 ,: 0 I t 

J 
e 1 

:;i~2i~:::i~ne ,:~3~ 

Figure 3. Example o f  the second instance of  a particular branch; A), B) actions took when issuing non-branch instructions; C) actions 
took before b2 branch execution 
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Figure 4. PCB' s average "prediction" accuracy obtained on Stanford benchmarks 
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Figure 5. PCB' s average 'prediction" accuracy obtained on SPEC "95 benchmarks 
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Figure 6. Average "prediction" accuracies obtained on SPEC '95 benchmarks 
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