
Appeared in the Proceedings of the Third Conference of The Academy of Technical Sciences from Romania,
ISBN: 978-973-713-223-9, Cluj-Napoca, November 2008

FORCING SOME ARCHITECTURAL CEILINGS OF THE
ACTUAL PROCESSOR PARADIGM

Lucian N. Vinţan1,2, Adrian Florea2, Arpad Gellert2

1 Academy of Technical Sciences from Romania

2 Computer Science Department, “Lucian Blaga” University of Sibiu, Emil Cioran Street, No. 4, 550025
Sibiu, Romania

{lucian.vintan, adrian.florea, arpad.gellert}@ulbsibiu.ro

Abstract: In our previously published research we discovered some very difficult to
predict branches, called unbiased branches that have a “random” dynamic behavior. We
developed some state of the art branch predictors to successfully predict them. Even these
powerful predictors obtained very modest average prediction accuracies on the unbiased
branches whereas their global average prediction accuracies are high. The unbiased
branches still restrict the ceiling of dynamic branch prediction and therefore accurately
predicting them remains an open problem. Since the overall performance of modern
superscalar processors is seriously affected by misprediction recovery, especially these
difficult branches represent a source of important performance penalties. Our statistics
show that about 28.68% of branches are dependent on critical Load instructions. Moreover,
5.61% of branches are unbiased and depend on critical Loads, too. These dependences
involve high-penalty mispredictions becoming serious performance obstacles and causing
significant performance degradation. The negative impact of (unbiased) branches over
global performance should be seriously attenuated by anticipating the results of long-
latency instructions, including critical Loads. On the other hand, hiding instructions’ long
latencies in a pipelined superscalar processor represents an important challenge itself.

In this work we focused on three main objectives: first, we proposed several metrics
for characterizing the unbiased branches from the random degree viewpoint, to effectively
help the computer architect to better understand branches’ predictability and also if the
predictor should be improved related to unbiased branches. Starting from the dynamical
behavior of unbiased branches, we tried to understand in more depth what randomness is.
Based on a hybrid mathematical and computer science approach we mainly developed
some random degrees associated to a branch. These metrics are: program’s Kolmogorov
complexity, compression rate, discrete entropy and HMM-based prediction accuracy, that
are useful for characterizing strings of symbols and particularly, our unbiased branches’
behavior. If some difficult branches are not “intrinsic” random according to our metrics,
their prediction accuracy might be further improved. Otherwise, the answer is a pessimistic
one, generating a powerful limitation in Computer Architecture.

As the second aim of this paper, we developed a superscalar architecture that
selectively anticipates the values produced by high-latency instructions. We are focusing
on Multiply, Division and Loads with miss in L1 Data Cache, implementing a Dynamic
Instruction Reuse (DIR) scheme for the Mul/Div instructions and respectively a Last Value
Predictor (LVP) for the critical Load instructions.

As a final objective of our research, we quantify the impact of our developed
Selective Instruction Reuse and Value Prediction techniques in a simultaneous
multithreaded architecture (SMT) that implies per thread Reuse Buffers (RB) and LVP
tables. We measure the IPC and the dynamic power consumption of the proposed SMT
architecture by varying the number of threads. Also, we evaluate, for different number of

 2

threads, the IPC speedup and the EDP gain of a SMT architecture enhanced with Selective
Instruction Reuse and Value Prediction against a classical SMT architecture.

Keywords: ILP processors, branch prediction, unbiased branches, discrete entropy,
random degree, dynamic instruction reuse, load value prediction, speculative execution,
SMT architecture, power consumption

1. Introduction

The branch prediction becomes a challenge problem for processors’ designers. Without
performing branch prediction it won’t be possible to aggressively exploit program’s
instruction level parallelism (ILP). All present branch prediction techniques are limited in
their accuracy. An important limitation cause is given by the used prediction contexts
(global and local histories respectively path information). In our previous work, we show
that, irrespective of the prediction information length and type, used in the state of the art
branch predictors, some branches are unbiased and non-deterministically shuffled, and are
characterized by low prediction accuracies (at average about 70%) [Vin06, Gel07].
Unbiased branches are unpredictable because their behavior’s nature is still not deeply
understood, based on a qualitative and quantitative approach. Rigorously defining and
understanding unbiased branches means to rigorously know what randomness is. Without
effectively understanding their “random” behavior we cannot expect to develop accurate
predictors. We started from the following fundamental question: could a deterministic
program generate some branches having a “random behavior” ? Unfortunately, the answer
is not simple. Based on a combined mathematical and computer science approach, we
proposed and developed, as the first aim of this paper, some random degree metrics, like
program’s Kolmogorov complexity, compression rate, discrete entropy and HMM (Hidden
Markov Model [Rab89]) based prediction accuracy, that might be useful for characterizing
strings of symbols and particularly, our unbiased branches’ behavior. All these random
degree metrics could really help the computer architect to understand in more depth the
nature of a certain branch and also if the branch predictor should be improved in order to
accurately predict even the corresponding unbiased branches. Our developed branch
random degrees could effectively help in quantifying program’s predictability, too.

Since the overall performance of modern superscalar processors is seriously affected
by misprediction recovery, these difficult branches represent a source of important
performance penalties. As we pointed out in [Gel06], 28.68% of branches are dependent on
critical Load instructions (Loads with miss in the L2 data cache that reach the head of the
Reorder Buffer), and 5.61% are unbiased and dependent on a previously committed critical
Load instruction. Such unbiased (or at least hard-to-predict) branches occur in pointer
chasing applications based on linked list traversal:

(e.g., while (node) // Branch B
 node = node�next // Load L).

In hereinbefore example, since Branch B depends on Load L, a branch misprediction
cannot be solved until Load L returns the value. If Load L has a high L2 cache miss rate,
the branch misprediction penalties of Branch B will have significant impact on the overall
performance. For example, the average misprediction penalty of such a branch, measured
as the latency between fetching the branch instruction and resolving the misprediction, is
about 540 cycles, considering a L2 cache miss penalty of 300 cycles [Gao08]. Thus, the
forementioned dependences involve high-penalty mispredictions becoming serious
performance obstacles and causing significant performance degradation in executing

 3

instructions from wrong paths. Therefore, the negative impact of mispredicting branches,
particularly of mispredicting unbiased branches over the global performance should be
seriously attenuated by anticipating the results of long-latency instructions. On the other
hand, hiding instructions’ long latencies in a pipelined superscalar processor represents an
important challenge itself.

As the second aim of this work we developed a superscalar architecture that
selectively anticipates the values produced by high-latency instructions. We will focus on
Multiply, Division and Loads with miss in the L1 data cache. These instructions would be
solved by a Dynamic Instruction Reuse scheme. However, an additional Reuse Buffer for
Load Value (Data) Reuse is not necessary, because a similar reuse mechanism is already
provided by the existing L1 and L2 data caches. Therefore, the Load instructions with miss
in the L1 data cache (selective approach) would be solved through value prediction.

As a final objective of our research, we quantify the impact of our developed
Selective Instruction Reuse and Value Prediction techniques in a simultaneous
multithreaded architecture that implies per thread Reuse Buffers and LVP tables. We
measure the IPC and the dynamic power consumption of the proposed SMT architecture
by varying the number of threads. Also, we evaluate, for different number of threads, the
IPC speedup and the EDP gain of a SMT architecture enhanced with Selective Instruction
Reuse and Value Prediction against a classical SMT architecture.

The organization of the rest of this paper is as follows: Section 2 contains our last
developments in understanding and predicting unbiased branches. During Section 3 we
make a qualitative and quantitative analysis of four distinct metrics to characterize the
random degree for a certain dynamic branch. Section 4 describes the two techniques that
we implemented for anticipating the results of long-latency instructions. In Section 5 we
quantify the impact of DIR and VP techniques in SMT Architectures. The last Section
debates and concludes on the most important obtained results and proposes some further
work.

2. Understanding and Predicting Unbiased Branches

According to our previous work, the percentages of unbiased branches are quite
significant, depending on the different used contexts and their lengths, giving a new
research challenge and a useful niche for branch prediction research. Through this paper
we showed that these difficult predictable branches cannot be well-predicted even using
efficient state of the art predictors. Thus, we specially developed two idealized powerful
branch predictors: an improved idealized piecewise linear branch predictor [Jim05] and a
HMM-based branch predictor. Unbiased branches need some specific efficient predictors
that are using some new, more relevant prediction information. Finding a new relevant
context to significantly reduce the number of unbiased shuffled branches remains an open
problem.

In our experiments we concentrated only on SPEC 2000 benchmarks [SPEC] with a
fraction of unbiased branches greater than 1%. Following this methodology, 6 integer
benchmarks fulfilled this condition. As a consequence, in Sections 2 and 3 we have
simulated only these difficult predictable benchmarks (gzip, bzip, mcf, parser, twolf, gcc).
Figure 1 presents the prediction accuracies obtained with the idealized piecewise linear
branch predictor (PW) on all branches respectively on the unbiased branches, using the
previous global dynamic branch’s condition value (PBV) as an additional prediction
information [Vin08]. The first two bars represent the prediction accuracies on all branches
respectively on unbiased branches, obtained with the idealized piecewise linear branch

 4

predictor. The rest of the bars were obtained using PBV (32 bits) as additional prediction
information, varying the number of weights (from 8590 up to 30713).

94,92%
95,45%

77,30% 78,30%

75%

80%

85%

90%

95%

PW
-J

im
en

ez

PW
_P

BV_8
59

0w

PW
_P

BV_1
25

30
w

PW
_P

BV_1
57

20
w

PW
_P

BV_2
05

73
w

PW
_P

BV_3
07

13
w

Different size perceptron-based predictors

P
re

di
ct

io
n

ac
cu

ra
cy

all_branches

unbiased

Figure 1. The prediction accuracies obtained with piecewise linear branch predictor on unbiased
branches versus all branches, using the global PBV as additional prediction information

Analyzing Figure 1 it can be observed how the PBV value determines the
improvement of unbiased branch prediction accuracy overcoming with at least 1% the best
state of the art predictor’s performance. Even if the improvement seems less significant, it
is very clear how this small percentage contributes to the global prediction accuracy (value
that overcome with more than 0.53% the best state of the art predictor’s performance).

Therefore, the unbiased branches behavior is practically unpredictable. Why this?
Are these special branches unpredictable due to some relevant information misses or are
they “intrinsic random”? However, they were obtained by compiling some deterministic
programs; therefore they were not randomly generated. But... what is random? During the
next paragraph we make a qualitative and quantitative analysis of four distinct metrics to
characterize the random degree for a certain dynamic branch. These metrics could help us
to better understand the unbiased branches behavior and their potential predictability.

3. Random degree metrics for characterizing unbiased branches’ behavior

Like in Section 2, we used the same 6 difficult predictable SPEC 2000 benchmarks
simulating one billion dynamic instructions for each one, skipping the first 300 million
instructions. It was considered a 16-bit global history context for each branch. We selected
from each benchmark very frequently processed (hundreds of thousands instances per a
certain context) strongly unbiased branch contexts having low polarization indexes
(P(S)∈[0.501, 0.565]) and respectively strongly biased contexts with high polarization
indexes (P(S)∈[0.979, 0.997]). The polarization index was defined in [Vin06]. Each
context has associated a binary string representing its behavior. This binary string
represents the input sequence for the HMM predictor developed by us in paragraph 3.1.
During paragraph 3.2 we calculated the random degrees associated to the same binary
strings based on their entropy. In paragraph 3.3 we calculated the compression rates
corresponding to the same branches’ behaviors, as with random degrees.

3.1. Random degree based on HMMs

During this paragraph we considered a per branch local history of 64 bits. Using a longer
history significantly complicated our developed HMM predictors and grew up the
computing time. We modified the number of hidden states of the HMM in order to

 5

maximize the prediction accuracy. Anyway, our proposed metric is quantitatively very
relevant.

Figure 2 comparatively presents, for unbiased and biased branches, the average
prediction accuracies obtained by our optimal HMM (R=1, N=2). There is a significant
difference between the average prediction accuracy on biased branches (98.43%) and
respectively on unbiased branches (65.03%). As we expected, the HMM predictor obtains
an excellent average prediction accuracy on biased branches showing its significant
prediction power. Unfortunately even these powerful predictors cannot accurately predict
unbiased branches. This fact suggests that unbiased branches are “intrinsic random” in
some way, being generated by very complex program structures.

98,43%

65,03%

40%

50%

60%

70%

80%

90%

100%

bz
ip

gc
c

gz
ip

m
cf

pa
rse

r
tw

olf

Ave
ra

ge

SPEC 2000 Benchmarks

P
re

di
ct

io
n

A
cc

ur
ac

y

Biased

Unbiased

Figure 2. Prediction accuracies using the best evaluated HMM (R=1, N=2)

3.2. Random degree based on discrete entropy

In this paragraph we considered as the random degree of a binary sequence RD(S), the
product between discrete entropy E(S) and shuffle degree D(S) associated to S [Vin08].
Thus,)()()(SESDSRD ⋅= . Figure 3 shows statistical results concerning the random
degree of (biased and respectively unbiased) binary sequences obtained through the
previously exposed methodology.

9,16%

40,00%

0%
10%
20%
30%
40%
50%
60%
70%

gz
ip

gc
c

m
cf

pa
rse

r

bz
ip2 tw

olf

Ave
ra

ge

SPEC 2000 Benchmarks

R
an

do
m

 D
eg

re
e

RD Biased

RD Unbiased

Figure 3. The random degree of biased respectively unbiased branches

Since our initial supposition was that biased branches sequences should have a lower
random degree, the simulation results confirm that the RD(S) metric represents a good
measure for random degree of binary sequences. A random degree around 40% shows that
respective unbiased branch is difficult or, practically, even impossible to be accurately
predicted.

 6

3.3. Random degree based on compression rate and program’s Kolmogorov complexity

The compression rate of a symbols sequence (or the space savings due to its compression),
provided by the well-known lossless compression algorithms such Huffman and Gzip,
could represent another effective metric for characterizing the random degree of that
sequence.

Further we transformed in extended ASCII files the binary sequences generated by
unbiased respectively biased branches behavior obtained through the methodology exposed
in Section 3. We grouped 8-bit sequences and generate the corresponding ASCII codes.
We compressed these files using the Gzip utility [Gzip] and respectively an own developed
application that implements Huffman encoding based on [Cor01]. We based our statistics
on two commonly used metrics in data compression:

%100⋅=
SizeCompressed

SizeedUncompress
RatenCompressio (1)

%1001 ⋅

−=

SizeedUncompress

SizeCompressed
SavingsSpace (2)

In Figure 4, we illustrate the space savings obtained by compression of biased
respectively unbiased branches with the previously described algorithms (Gzip and
Huffman). The main conclusion refers to the space savings obtained through unbiased
branches compression (19.15% with the Gzip utility) that are significantly lower than those
obtained through biased branches compression (90.37% with Gzip).

90,37%

83,78%

19,15%

5,52%

-10%

10%

30%

50%

70%

90%

gz
ip gc

c
m

cf

pa
rs

er

bz
ip2

tw
olf

Ave
ra

ge

SPEC 2000 Benchmarks

S
pa

ce
 s

av
in

gs

Gzip_Biased

Huffman_Biased

Gzip_Unbiased

Huffman_Unbiased

Figure 4. Space savings using the Gzip and Huffman algorithms

The Kolmogorov complexity of code sequence that effectively generates unbiased
branches could be a useful metric for describing the random degree, too. Thus, the
unbiased branches complexity should be higher than the other conditional branches
complexity. Nevertheless, Kolmogorov complexity has a static nature while it tries to
characterize the dynamic behavior of a certain branch. On the other hand this metric is the
single one that emphasizes the semantic complexity of the corresponding generator code
sequence. Based on analysis of many integer recursive benchmarks we have reasons to
believe that recurrence combined with some certain conditional branches will generate
branches with unbiased behavior and thus with high Kolmogorov complexity. Such
examples occur in the link lists or trees cases where the address of an element is tested and
followed by a recurrent call of the same function to test the next element in the tree.

 7

4. Anticipating Long-Latency Instructions Results

Further we developed a superscalar architecture that selectively anticipates the values
produced by high-latency instructions. This is particularly useful in order to reduce the
negative impact of unbiased branches in superscalar processors, too. The reusability degree
of MUL and DIV instructions, measured with an unlimited Reuse Buffer, was 28.9% on
the integer (INT) benchmarks and 61.9% on the floating-point (FP) benchmarks. These
instructions would be solved by a DIR scheme. We also detected and reused the results of
trivial operations like V*0, V*1, 0/V, V/1 and V/V. The reusability degree of Load values
was 77.4% on the integer benchmarks and 76.4% on the floating-point benchmarks.
However, an additional Reuse Buffer for Load Value (Data) Reuse is not necessary,
because a similar reuse mechanism is already provided by the existing L1 and L2 data
caches. Therefore, the Load instructions with miss in the L1 data cache (selective
approach) would be solved through a simple Last Value Predictor. The hardware structures
used for selective instruction reuse and load value prediction and their functionality
mechanism are detailed in [Gel08].

Figure 5 presents the relative IPC speedup and the relative energy-delay product
(EDP) improvement for the integer respectively floating-point SPEC 2000 benchmarks.
The EDP represents the processor’s total power, divided by the squared IPC. We
determined the energy-delay product for the architecture without RB and LVPT
respectively for the architecture with a RB of 1024 entries and LVPTs of different sizes.
The EDP Gain represents the relative energy-delay product improvement for each LVPT
size. As it can be observed, the optimal LVPT size is 1024.

0%
5%

10%
15%
20%
25%
30%
35%
40%

16 32 64 12
8

25
6

51
2

10
24

20
48

LVPT entries

INT - IPC Speedup

INT - EDP Gain

FP - IPC Speedup

FP - EDP Gain

Figure 5. Relative IPC speedup and relative energy-delay product gain with a Reuse Buffer of

1024 entries, the Trivial Operation Detector, and the Load Value Predictor

Predicting critical Load instructions through an additional Last Value Predictor,
improves the IPC with 3.5% on the integer benchmarks respectively with 23.6% on the
floating-point benchmarks. This significant speedup lowers the energy consumption with
6.2% on the integer benchmarks respectively with 34.5% on the floating-point
benchmarks. This difference occurs because the number of critical Loads is more than
twice higher in the floating-point benchmarks. Consequently, selectively applying some
well-known techniques on long-latency instructions provides serious performance gain and
significantly reduces energy consumption within the superscalar architecture.

5. Selective Instruction Reuse and Value Prediction in SMT Architectures

As a final objective of this research, we quantified the impact of our developed techniques
for anticipating long-latency instructions results in a simultaneous multithreaded

 8

architecture that implies per thread RB and LVP tables. We developed a Reuse Buffer and
a Trivial Operation Detector for MUL and DIV instructions respectively a Last Value
Predictor for critical Load instructions, and we integrated all these structures into the M-
Sim simulator [Sha05]. M-Sim supports single threaded execution (superscalar mode) as
well as the multithreaded mode in which multiple threads of control are executed
simultaneously, according to the Simultaneous Multithreaded (SMT) model [Egg97]. In
the SMT mode, some processor structures (i.e. issue queue, physical register files,
functional units, caches) are shared among the threads, and others (rename tables, ROBs,
Load/Store Queues, branch predictors) are private to each thread (see Figure 6).

Fetch
Unit

Branch
Predictor

PC I-Cache Decode Issue
Queue

Rename
Table

Physical
Register

File

ROB

LVPT

Functional
Units

LSQ

D-Cache

RB

Fetch
Unit

Fetch
Unit

Branch
Predictor
Branch

Predictor
Branch

Predictor
PCPC I-CacheI-Cache Decode Issue

Queue
Issue

Queue
Rename

Table
Rename

Table
Rename

Table

Physical
Register

File

Physical
Register

File

ROB

LVPT

Functional
Units

LSQ

Functional
Units

Functional
Units

LSQLSQ

D-CacheD-Cache

RBRB

Figure 6. SMT architecture enhanced with selective instruction reuse and value prediction

Threads maintain separate program counters (PC), but share the fetch unit and I-
Cache. Threads share the available bandwidth in the front end, including fetch, decode and
renaming. The M-Sim implements the well known ICOUNT fetch policy, by default,
fetching from up to two threads per cycle. The M-Sim has implemented separate branch
predictors per thread, which provide the best performance for multithreaded processors.
The Reorder Buffers (ROB) as well as our Reuse Buffers (RB) and Load Value Prediction
Tables (LVPT) are private. Each thread maintains its own rename table because it has its
own set of architectural registers. After renaming, instructions from all threads are
dispatched into the shared Issue Queue. In the Issue Queue, instructions from all threads
participate in instruction wakeup and compete for the issue bandwidth in selection.
Instructions that are selected for issue continue to register file access. There are separate
integer and floating-point physical register files, both being shared among threads. After
register file access is complete, instructions begin execution on the functional units, which
are also shared. Loads and Stores access the shared data cache. In order to maintain the
correct ordering of memory accesses, the Load/Store Queue (LSQ) is used. The M-Sim
uses separate LSQs per thread, so that an unresolved address from one thread does not
prevent Loads in other threads from issuing. After execution, instructions write back to the
register files. Commitment is done in order for each thread.

5.1. Simulation Methodology

For the superscalar architecture we evaluated from SPEC 2000 suite seven integer
benchmarks (bzip, gcc, gzip, mcf, parser, twolf, vpr) and six floating-point benchmarks
(applu, equake, galgel, lucas, mesa, mgrid). In SMT mode, the M-Sim runs multiple
benchmarks as different threads in parallel. Therefore, we combined benchmarks into
groups of 2, 3 or 6 depending on the simulated SMT architecture. Thus, we used {bzip,
gcc}, { gzip, parser}, { twolf, vpr}, { applu, equake}, { galgel, lucas}, { mesa, mgrid} for our
SMT with 2 threads, {bzip, gcc, gzip}, { parser, twolf, vpr}, { applu, equake, galgel},
{ lucas, mesa, mgrid} for the SMT with 3 threads, and {bzip, gcc, gzip, parser, twolf, vpr},

 9

{ applu, equake, galgel, lucas, mesa, mgrid} for the 6-threaded SMT. Table 1 presents
some important parameters of the simulated architecture:

Execution unit Number of units Operation latency
intALU 4 1
intMULT / intDIV 1 3 / 20
fpALU 4 2

Execution Latencies

fpMULT / fpDIV 1 4 / 12
Superscalarity Fetch / Decode / Issue / Commit width = 4

Branch predictor bimodal predictor with 2048 entries
Memory unit Access Latency
4-way associative L1 data cache, 32 KB 1 cycle
8-way associative unified L2 data cache,
512 KB

6 cycles
Caches and

Memory

Memory 100 cycles
Register File: 32 INT / 32 FP
Reorder Buffer (ROB): 128 entries Resources
Load/Store Queue (LSQ): 48 entries

Table 1. Parameters of the simulated architecture

M-Sim facilitates the power estimation as supplied by the Wattch framework [Bro00]. The
dynamic power consumption measurements are generated using an 80 nm CMOS
technology:

faVCP ddd ⋅⋅⋅= 2 (3)
where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply voltage, and f
is the clock frequency. Vdd and f depend on the assumed process technology. The activity
factor a indicates how often clock ticks lead to switching activity on average. For the
energy measurements, we used the Energy-Delay Product, a widely used metric [Bro00]:

2IPC

PowerTotal
EDP = (4)

5.2. Experimental Results

We measured the IPC and the dynamic power consumption of the proposed SMT
architecture by varying the number of threads. Figures 7 and 8 present the IPC obtained by
evaluating our developed superscalar and SMT architectures with respectively without
Reuse Buffer and Load Value Predictor. According to our previous results, we optimally
sized the RB respectively the LVPT to 1024 entries.

1,5
1,6
1,7
1,8
1,9
2,0
2,1
2,2
2,3
2,4

1 2 3 6

Threads

IP
C SMT

SMT w ith RB & LVPT

Figure 7. IPC obtained with respectively without RB & LVPT on the integer benchmarks

 10

2,0
2,1
2,2
2,3
2,4
2,5
2,6
2,7
2,8
2,9
3,0

1 2 3 6

Threads
IP

C

SMT

SMT w ith RB &
LVPT

Figure 8. IPC obtained with respectively without RB & LVPT on the floating-point benchmarks

Figures 7 and 8 show that the RB and LVPT structures improve the IPC on all
evaluated configurations. However, the highest improvement was obtained with one
thread, and as the number of threads grows, the IPC improvement becomes lower (see
Figure 8). With fewer threads, the ten shared functional units (see Table 1) are underused
and therefore the selective instruction reuse and value prediction techniques have an
important improvement potential. With a higher number of threads, the same ten functional
units are highly used, thus both the instruction reuse and value prediction mechanisms
becoming less important. Therefore, especially on floating-point benchmarks, with six
threads we obtained the best IPC but the lowest relative IPC speedup (see Figures 7 and 8).

Finally, we evaluated, for different number of threads, the IPC speedup and the EDP
gain of a SMT architecture enhanced with Selective Instruction Reuse and Value
Prediction against a classical SMT architecture. In Figure 9 the first and third bars
represent the EDP gains obtained with our superscalar (one thread) and SMT architecture
(2, 3 and 6 threads) on the floating-point respectively integer benchmarks, whereas the
second and fourth bars presents the IPC speedups achieved with the same architectures. As
Figure 9 depicts, the RB and LVPT structures achieved IPC speedups and EDP gains on all
the simulated configurations. The best improvements on the integer benchmarks have been
obtained with 2 threads: an IPC speedup of 5.95% and an EDP gain of 10.44%. Although,
on the floating-point benchmarks, we obtained the highest improvements with the
enhanced (LVPT + RB) superscalar architecture, the SMT with 3 threads also provides an
important IPC speedup of 16.51% and an EDP gain of 25.94%. Analyzing Figures 7 and 8
we can observe the advantage of SMT architectures against the superscalar architecture
irrespective these are enhanced or not with selective instruction reuse and value prediction
mechanism.

0%
5%

10%
15%
20%
25%
30%
35%
40%

1 2 3 6

Threads

FP - EDP Gain

FP - IPC Speedup

INT - EDP Gain

INT - IPC Speedup

Figure 9. Relative IPC speedup and EDP gain (enhanced SMT vs. classical SMT) by varying the

number of threads

 11

6. Conclusions and Further Work

In this work we made the following contributions: first, we have gained additional
knowledge about branch behavior and predictability. We mainly developed some random
degrees associated to a certain branch based on HMM predictability, discrete entropy,
compression rate and respectively program’s Kolmogorov complexity. All these random
degree metrics could practically help the computer architect to better understand branches’
predictability and if the branch predictor should be improved related to the unbiased
branches. They are showing how much intrinsic randomness a string of symbols and,
particularly, our discovered unbiased branches contain. If some difficult branches are not
intrinsic random according to our metrics, their prediction accuracy could be further
improved by the researcher. Otherwise, if these branches are proving to be intrinsic
random, the answer is a pessimistic one, generating a powerful limitation in Computer
Architecture.

The second contribution is starting from the lack of efficiency of state of the art
branch predictors to accurately predict unbiased branches. We developed an improved
piecewise linear branch predictor to successfully predict unbiased branches. However,
even this idealized powerful predictor obtained modest average prediction accuracy on the
unbiased branches (78.3%) while its global average prediction accuracy is of 95.45%.
Other very powerful general predictors, like our developed HMMs, predict unbiased
branches with an even lower average accuracy. Therefore, predicting unbiased branches
still represents a hard challenge. Computer Architects cannot therefore continue to expect a
prediction accuracy improvement with present-day prediction techniques and alternative
approaches are necessary. Taking into account that an important fraction of branches are in
the same time unbiased and dependent by critical Loads, we developed a superscalar
architecture that selectively anticipates the values produced by high-latency instructions
inclusively in order to reduce the negative impact of unbiased branches in ILP processors.
The experimental results, performed on the SPEC 2000 benchmarks, show a significant
IPC speedup and reduced energy consumption for the proposed architecture.

As the third contribution, we quantify the impact of our developed selective
instruction reuse and value prediction techniques in a simultaneous multithreaded
architecture. The new architecture enhanced with RB and LVPT structures achieved IPC
speedups and EDP gains on all the simulated configurations. The best improvements on the
integer benchmarks have been obtained with 2 threads: an IPC speedup of 5.95% and an
EDP gain of 10.44%. Although, on the floating-point benchmarks, we obtained the highest
improvements with the enhanced (LVP + Reuse) superscalar architecture, the SMT with 3
threads also provides an important IPC speedup of 16.51% and an EDP gain of 25.94%.
With fewer threads, the shared functional units are underused and therefore the selective
instruction reuse and value prediction techniques have an important improvement
potential. With a higher number of threads, the same functional units are highly used, thus
both the instruction reuse and value prediction mechanisms becoming less important.
Therefore, especially on floating-point benchmarks, with six threads we obtained the best
IPC but the lowest relative IPC speedup. Also, we can observe the advantage of SMT
architectures against the superscalar architecture irrespective these are enhanced or not
with selective instruction reuse and value prediction mechanism.

A next step of our research is to apply the knowledge gained about unbiased
branches to design a novel dedicated prediction algorithm, that provides better results than
previous proposals. Also, as a further work it would be useful to quantify the unbiased
branch ceiling in a multicore architecture. Understanding, implementing and quantifying

 12

instruction reuse and value prediction benefits in a multicore architecture might be another
very important challenge for the future.

Acknowledgments

This work was partially supported by the Romanian National Council of Academic
Research (CNCSIS) through the research grants TD-248/2007 and A-39/2007. We like to
thank to Professor Solomon Marcus, member of the Romanian Academy, for providing
some useful references and for competently explaining some concepts related to
randomness’ approaches.

References

[Bro00] Brooks D., Tiwari V., Martonosi M., Wattch: A Framework for Architectural -
Level Power Analysis and Optimizations, International Symposia on Computer
Architecture, Vancouver, 2000.
[Cor01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein -
Introduction to Algorithms, Section 16.3, pp.385–392, Second Edition, MIT Press and
McGraw-Hill, 2001.
[Egg97] Eggers S. Emer J., Levy H., Lo J., Stamm R., Tullsen D., Simultaneous
Multithreading: A Platform for Next-Generation Processors, IEEE Micro, Vol 17, Issue 5,
September 1997.
[Gao08] Gao H., Ma Y., Dimitrov M., Zhou H. – Address-Branch Correlation: A Novel
Locality for Long-Latency Hard-to-Predict Branches, The 14th International Symposium
on High Performance Computer Architecture, Salt Lake City, Utah, February 2008.
[Gel06] Gellert A., Florea A. – Finding and Solving Difficult Predictable Branches,
Science and Supercomputing in Europe, Barcelona, Spain, 2006.
[Gel07] Gellert A., Florea A., Vinţan M., Egan C., Vinţan L. – Unbiased Branches: An
Open Problem, Lecture Notes in Computer Science, Advances in Computer Systems
Architecture, vol. 4697, pp. 16-27, Springer-Verlag Berlin / Heidelberg, 2007.
[Gel08] Gellert A., Florea A., Vinţan L. – Exploiting Selective Instruction Reuse and
Value Prediction in a Superscalar Architecture, Submitted to Journal of Systems
Architecture, ISSN: 1383-7621, Elsevier, 2008.
[Gzip] http://www.gzip.org/
[Jim05] Jiménez D. - Idealized Piecewise Linear Branch Prediction, Journal of
Instruction-Level Parallelism, April 2005.
[Rab89] Rabiner L. R. - A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition, Proceedings of the IEEE, Vol. 77, No. 2, February 1989.
[Sha05] Sharkey J., Ponomarev D., Ghose K., M-SIM: A Flexible, Multithreaded
Architectural Simulation Environment, Technical Report CS-TR-05-DP01, Department of
Computer Science, State University of New York at Binghamton, October 2005.
[Shi01] Shivakumar P., Jouppi N. P., Cacti 3.0: An Integrated Timing, Power, and Area
Model, WRL Research Report, Aug 2001, USA.
[SPEC] SPEC2000, The SPEC benchmark programs, http://www.spec.org.
[Vin06] Vinţan L., Gellert A., Florea A., Oancea M., Egan C. – Understanding Prediction
Limits through Unbiased Branches, Lecture Notes in Computer Science, Advances in
Computer Systems Architecture, vol. 4186, pp. 480-487, Springer-Verlag Berlin, 2006.
[Vin08] Vinţan L., Florea A., Gellert A. – Random Degrees of Unbiased Branches,
Submitted to Proceedings of the Romanian Academy, Series A: Mathematics, Physics,
Technical Sciences, Information Science, ISSN 1454-9069, Bucharest, 2008.

