Appeared in the Proceedings of the Third Conference of The Academy of Technical Sciences from Romania,
ISBN: 978-973-713-223-9, Cluj-Napoca, November 2008

FORCING SOME ARCHITECTURAL CEILINGS OF THE
ACTUAL PROCESSOR PARADIGM

Lucian N. Vintan'?, Adrian Florea? Arpad Gellert?

! Academy of Technical Sciences from Romania
2Computer Science Department, “Lucian Blaga” Uniitgrsf Sibiu, Emil Cioran Street, No. 4, 550025
Sibiu, Romania
{lucian.vintan, adrian.florea, arpad.gellert}@ulbisi.ro

Abstract: In our previously published research we discovesethe very difficult to
predict branches, called unbiased branches tha havandom” dynamic behavior. We
developed some state of the art branch predictossi¢cessfully predict them. Even these
powerful predictors obtained very modest averaggliption accuracies on the unbiased
branches whereas their global average predictiauracies are high. The unbiased
branches still restrict the ceiling of dynamic hofarprediction and therefore accurately
predicting them remains an open problem. Since awerall performance of modern
superscalar processors is seriously affected byredsction recovery, especially these
difficult branches represent a source of imporfa@tformance penalties. Our statistics
show that about 28.68% of branches are dependesritmal Load instructions. Moreover,
5.61% of branches are unbiased and depend onatrit@ads, too. These dependences
involve high-penalty mispredictions becoming sesigerformance obstacles and causing
significant performance degradation. The negatimpact of (unbiased) branches over
global performance should be seriously attenuatgedarticipating the results of long-
latency instructions, including critical Loads. @re other hand, hiding instructions’ long
latencies in a pipelined superscalar processoesepits an important challenge itself.

In this work we focused on three main objectivést,fwe proposed several metrics
for characterizing the unbiased branches from éinelam degree viewpoint, to effectively
help the computer architect to better understamohdires’ predictability and also if the
predictor should be improved related to unbiasexhddnes. Starting from the dynamical
behavior of unbiased branches, we tried to undadsiia more depth what randomness is.
Based on a hybrid mathematical and computer sciappeoach we mainly developed
some random degrees associated to a branch. Thetsesnare: program’s Kolmogorov
complexity, compression rate, discrete entropy ldMM-based prediction accuracy, that
are useful for characterizing strings of symbold aarticularly, our unbiased branches’
behavior. If some difficult branches are not “insic” random according to our metrics,
their prediction accuracy might be further improv@therwise, the answer is a pessimistic
one, generating a powerful limitation in Computechitecture.

As the second aim of this paper, we developed arsoplar architecture that
selectively anticipates the values produced by -‘haggncy instructions. We are focusing
on Multiply, Division and Loads with miss in L1 RatCache, implementing a Dynamic
Instruction Reuse (DIR) scheme for the Mul/Div mistions and respectively a Last Value
Predictor (LVP) for the critical Load instructions.

As a final objective of our research, we quantife timpact of our developed
Selective Instruction Reuse and Value Predictioghngues in a simultaneous
multithreaded architecture (SMT) that implies peread Reuse Buffers (RB) and LVP
tables. We measure the IPC and the dynamic powssuoaption of the proposed SMT
architecture by varying the number of threads. Alge evaluate, for different number of

threads, the IPC speedup and the EDP gain of a &®gflitecture enhanced with Selective
Instruction Reuse and Value Prediction againsassital SMT architecture.

Keywords: ILP processors, branch prediction, unbiased bras)clugéscrete entropy,
random degree, dynaminostruction reuse, load value prediction, specuagxecution,
SMT architecture, power consumption

1. Introduction

The branch prediction becomes a challenge probampriocessors’ designers. Without
performing branch prediction it won’'t be possible aggressively exploit program’s
instruction level parallelism (ILP). All presentdnch prediction techniques are limited in
their accuracy. An important limitation cause isegi by the used prediction contexts
(global and local histories respectively path infation). In our previous work, we show
that, irrespective of the prediction informatiomdgh and type, used in the state of the art
branch predictors, some branches are unbiasedamndeaterministically shuffled, and are
characterized by low prediction accuracies (at ayerabout 70%) [Vin06, Gel07].
Unbiased branches are unpredictable because tekavior's nature is still not deeply
understood, based on a qualitative and quantitaiperoach. Rigorously defining and
understanding unbiased branches means to rigor@nsky what randomness is. Without
effectively understanding their “random” behavioe wannot expect to develop accurate
predictors. We started from the following fundanaémjuestion:could a deterministic
program generate some branches having a “randonabien” ? Unfortunately, the answer
is not simple. Based on a combined mathematical comdputer science approach, we
proposed and developed, as the first aim of thiepasome random degree metrics, like
program’s Kolmogorov complexity, compression raliscrete entropy and HMM (Hidden
Markov Model [Rab89]) based prediction accuracgt tinight be useful for characterizing
strings of symbols and particularly, our unbiasednbhes’ behavior. All these random
degree metrics could really help the computer &chito understand in more depth the
nature of a certain branch and also if the brameliptor should be improved in order to
accurately predict even the corresponding unbidseohches. Our developed branch
random degrees could effectively help in quantidypmogram’s predictability, too.

Since the overall performance of modern supersgatazessors is seriously affected
by misprediction recovery, these difficult branchespresent a source of important
performance penalties. As we pointed out in [Gel@8]68% of branches are dependent on
critical Load instructions (Loads with miss in th2 data cache that reach the head of the
Reorder Buffer), and 5.61% are unbiased and depé¢iotea previously committed critical
Load instruction. Such unbiased (or at least haspredict) branches occur in pointer
chasing applications based on linked list traversal

(e.g., while (node) /l Branch B
node = node’next // Load I

In hereinbefore example, since Branch B dependsoad L, a branch misprediction
cannot be solved until Load L returns the valud.déd L has a high L2 cache miss rate,
the branch misprediction penalties of Branch B wale significant impact on the overall
performance. For example, the average mispredig@nalty of such a branch, measured
as the latency between fetching the branch instnu@nd resolving the misprediction, is
about 540 cycles, considering a L2 cache miss pen&l300 cycles [Gao08]. Thus, the
forementioned dependences involve high-penalty madiptions becoming serious
performance obstacles and causing significant pedoce degradation in executing

instructions from wrong paths. Therefore, the niggaimpact of mispredicting branches,
particularly of mispredicting unbiased branchesrowe global performance should be
seriously attenuated by anticipating the resultéonf-latency instructions. On the other
hand, hiding instructions’ long latencies in a fiiped superscalar processor represents an
important challenge itself.

As the second aim of this work we developed a sgadar architecture that
selectively anticipates the values produced by-a¢gncy instructions. We will focus on
Multiply, Division and Loads with miss in the L1 tdacache. These instructions would be
solved by a Dynamic Instruction Reuse scheme. Hewean additional Reuse Buffer for
Load Value (Data) Reuse is not necessary, becassuilar reuse mechanism is already
provided by the existing L1 and L2 data cachesrdfoee, the Load instructions with miss
in the L1 data cache (selective approach) woulddbheed through value prediction.

As a final objective of our research, we quantife timpact of our developed
Selective Instruction Reuse and Value Predictioghngues in a simultaneous
multithreaded architecture that implies per thréxelise Buffers and LVP tables. We
measure the IPC and the dynamic power consumpfidneoproposed SMT architecture
by varying the number of threads. Also, we evalutiedifferent number of threads, the
IPC speedup and the EDP gain of a SMT archite@nhanced with Selective Instruction
Reuse and Value Prediction against a classical Sidfitecture.

The organization of the rest of this paper is dowis: Section 2 contains our last
developments in understanding and predicting uelidsanches. During Section 3 we
make a qualitative and quantitative analysis ofr fdistinct metrics to characterize the
random degree for a certain dynamic branch. Seetidescribes the two techniques that
we implemented for anticipating the results of ldaggncy instructions. In Section 5 we
quantify the impact of DIR and VP techniques in SMichitectures. The last Section
debates and concludes on the most important olotag®ilts and proposes some further
work.

2. Understanding and Predicting Unbiased Branches

According to our previous work, the percentages uobiased branches are quite
significant, depending on the different used cotsteand their lengths, giving a new
research challenge and a useful niche for branedigiron research. Through this paper
we showed that these difficult predictable branctesnot be well-predicted even using
efficient state of the art predictors. Thus, wecséy developed two idealized powerful
branch predictors: an improved idealized piecewisgar branch predictor [Jim05] and a
HMM-based branch predictor. Unbiased branches seeatk specific efficient predictors
that are using some new, more relevant predictidormation. Finding a new relevant
context to significantly reduce the number of usbi shuffled branches remains an open
problem.

In our experiments we concentrated only on SPE®@ 2@hchmarks [SPEC] with a
fraction of unbiased branches greater than 1%.o®ollg this methodology, 6 integer
benchmarks fulfilled this condition. As a conseqeenin Sections 2 and 3 we have
simulated only these difficult predictable benchksafzip, bzip, mcf, parser, twolf, gcc
Figure 1 presents the prediction accuracies oldawmiéh the idealized piecewise linear
branch predictor (PW) on all branches respectiwglythe unbiased branches, using the
previous global dynamic branch’s condition valuBV® as an additional prediction
information [Vin08]. The first two bars represehetprediction accuracies on all branches
respectively on unbiased branches, obtained wighidiealized piecewise linear branch

predictor. The rest of the bars were obtained uBiBY (32 bits) as additional prediction

information, varying the number of weights (from985up to 30713).

2y 95,45%
9 o)
£ o5% :
§ 90% Oall_branches
S 85% Hunbiased
3 80w 77,30% 78,30%
o 75% ; ‘
a
))) ©)
S & AP & N
~ AN NC N
@'3 ’ N4 7 W A/
7/ 7/ 7/ 7/
& D N

Different size perceptron-based predictors

Figure 1. The prediction accuracies obtained wpiecewise linear branch predicten unbiased
branches versus all branches, using the global #B&tlditional prediction information

Analyzing Figure 1 it can be observed how the PB#aug determines the
improvement of unbiased branch prediction accum®&ycoming with at least 1% the best
state of the art predictor's performance. Evemd improvement seems less significant, it
is very clear how this small percentage contribtwethie global prediction accuracy (value
that overcome with more than 0.53% the best sfateecart predictor’'s performance).

Therefore, the unbiased branches behavior is pedigtiunpredictable. Why this?
Are these special branches unpredictable due t@ setavant information misses or are
they “intrinsic random”? However, they were obtairngy compiling some deterministic
programs; therefore they were not randomly gendrd&at... what is random? During the
next paragraph we make a qualitative and quamiatnalysis of four distinct metrics to
characterize the random degree for a certain dynanainch. These metrics could help us
to better understand the unbiased branches behawiotheir potential predictability.

3. Random degree metrics for characterizing unbiagebranches’ behavior

Like in Section 2, we used the same 6 difficultdiceable SPEC 2000 benchmarks
simulating one billion dynamic instructions for Bacne, skipping the first 300 million
instructions. It was considered a 16-bit globatdrig context for each branch. We selected
from each benchmark very frequently processed (taglsdof thousands instances per a
certain context) strongly unbiased branch conteéxasing low polarization indexes
(P(S[0.501, 0.565]) and respectively strongly biasedterts with high polarization
indexes (PPU[0.979, 0.997]). The polarization index was defined[Vin06]. Each
context has associated a binary string represeritsxgoehavior. This binary string
represents the input sequence for the HMM predidémeloped by us in paragraph 3.1.
During paragraph 3.2 we calculated the random @sgessociated to the same binary
strings based on their entropy. In paragraph 3.3caleulated the compression rates
corresponding to the same branches’ behaviorsjthgandom degrees.

3.1.Random degree based on HMMs

During this paragraph we considered a per branchl leistory of 64 bits. Using a longer
history significantly complicated our developed HMptedictors and grew up the
computing time. We modified the number of hiddeatet of the HMM in order to

maximize the prediction accuracy. Anyway, our pisgab metric is quantitatively very
relevant.

Figure 2 comparatively presents, for unbiased aiaded branches, the average
prediction accuracies obtained by our optimal HMREL, N=2). There is a significant
difference between the average prediction accuratybiased branches (98.43%) and
respectively on unbiased branches (65.03%). Asxpeated, the HMM predictor obtains
an excellent average prediction accuracy on bidsethches showing its significant
prediction power. Unfortunately even these powepitedictors cannot accurately predict
unbiased branches. This fact suggests that unbiasethes are “intrinsic random” in
some way, being generated by very complex progtemtares.

98,43%

B Biased
B Unbiased

Prediction Accuracy

SPEC 2000 Benchmarks

Figure 2. Prediction accuracies using the best evaluated HR¥L, N=2)

3.2.Random degree based on discrete entropy

In this paragraph we considered as the random éegfr@a binary sequence R¥)(the
product between discrete entropySE&nd shuffle degree B) associated t& [Vin08].
Thus, RD(S) = D(S)[E(S). Figure 3 shows statistical results concerning rtiedom

degree of (biased and respectively unbiased) bis&guences obtained through the
previously exposed methodology.

ORD Biased
B RD Unbiased

Random Degree

o S &
& 8
<

.oV
O

SPEC 2000 Benchmarks

Figure 3. The random degree of biased respectively unbiassatthes

Since our initial supposition was thHaiasedbranches sequences should have a lower
random degree, the simulation results confirm that RDE metric represents a good
measure for random degree of binary sequencesndona degree around 40% shows that
respective unbiased branch is difficult or, pradtic even impossible to be accurately
predicted.

3.3.Random degree based on compression rate and proggd€nlmogorov complexity

The compression rate of a symbols sequence (@pthee savings due to its compression),
provided by the well-known lossless compressiororilgns suchHuffman and Gzip,
could represent another effective metric for chiarming the random degree of that
sequence.

Further we transformed in extended ASCII files bieary sequences generated by
unbiased respectively biased branches behaviomelt#éhrough the methodology exposed
in Section 3. We grouped 8-bit sequences and gen#ra corresponding ASCII codes.
We compressed these files using @mp utility [Gzip] and respectively an own developed
application that implementduffmanencoding based on [Cor01]. We based our statistics
on two commonly used metrics in data compression:

UncompressdSize

CompressinRate= .
Compresse&ize

100% (1)

Spacesavings= (1— Compresseize J [100%

: (2)
Uncompressd Size

In Figure 4, we illustrate the space savings oktiiby compression of biased
respectively unbiased branches with the previoughgcribed algorithmsQzip and
Huffmar). The main conclusion refers to the space savoigained through unbiased
branches compression (19.15% with @wp utility) that are significantly lower than those
obtained through biased branches compression @Ov@th Gzip).

B Gzip_Biased

B Huffman_Biased

Gzip_Unbiased

Space savings

B Huffman_Unbiased

SPEC 2000 Benchmarks

Figure 4. Space savings using tfzip andHuffmanalgorithms

The Kolmogorov complexity of code sequence tha¢aively generates unbiased
branches could be a useful metric for describing tandom degree, too. Thus, the
unbiased branches complexity should be higher tien other conditional branches
complexity. Nevertheless, Kolmogorov complexity hasstatic nature while it tries to
characterize the dynamic behavior of a certaindra®n the other hand this metric is the
single one that emphasizes the semantic complexitiie corresponding generator code
sequence. Based on analysis of many integer reeub@nchmarks we have reasons to
believe that recurrence combined with some certaimditional branches will generate
branches with unbiased behavior and thus with Hgitmogorov complexity. Such
examples occur in the link lists or trees casesravtiee address of an element is tested and
followed by a recurrent call of the same functiondst the next element in the tree.

4. Anticipating Long-Latency Instructions Results

Further we developed a superscalar architecture shlactively anticipates the values
produced by high-latency instructions. This is jeatarly useful in order to reduce the
negative impact of unbiased branches in superspedaessors, too. The reusability degree
of MUL and DIV instructions, measured with an unted Reuse Buffer, was 28.9% on
the integer (INT) benchmarks and 61.9% on the ifigapoint (FP) benchmarks. These
instructions would be solved by a DIR scheme. Vi¢e dletected and reused the results of
trivial operations like V*0, V*1, 0/V, V/1 and V/VThe reusability degree of Load values
was 77.4% on the integer benchmarks and 76.4% enfltating-point benchmarks.
However, an additional Reuse Buffer for Load Vall¥ata) Reuse is not necessary,
because a similar reuse mechanism is already moviy the existing L1 and L2 data
caches. Therefore, the Load instructions with missthe L1 data cache (selective
approach) would be solved through a simple Lasu®&&redictor. The hardware structures
used for selective instruction reuse and load valediction and their functionality
mechanism are detailed in [Gel08].

Figure 5 presents the relative IPC speedup andela¢ive energy-delay product
(EDP) improvement for the integer respectively filog-point SPEC 2000 benchmarks.
The EDP represents the processor’'s total poweridetiv by the squared IPC. We
determined the energy-delay product for the archite without RB and LVPT
respectively for the architecture with a RB of 10#ries and LVPTs of different sizes.
The EDP Gainrepresents the relative energy-delay product ingmreent for each LVPT
size. As it can be observed, the optimal LVPT &8z8024.

40%
35% -
30% —— INT - IPC Speedup

25% + W —=— INT - EDP Gain
20% M :/H

15% - —a&— FP - IPC Speedup

12‘;;0 £k —%— FP - EDP Gain
0 & &

A 4

\ 4 4 g v

0% -

STV S S5 SR PR S
R SR R RN

LVPT entries

Figure 5. Relative IPC speedup and relative energy-delagiyrogain with a Reuse Buffer of
1024 entries, the Trivial Operation Detector, dmglltoad Value Predictor

Predicting critical Load instructions through andiidnal Last Value Predictor,
improves the IPC with 3.5% on the integer benchsadspectively with 23.6% on the
floating-point benchmarks. This significant speediwers the energy consumption with
6.2% on the integer benchmarks respectively with5%4 on the floating-point
benchmarks. This difference occurs because the euwibcritical Loads is more than
twice higher in the floating-point benchmarks. Gamsently, selectively applying some
well-known techniques on long-latency instructigmsvides serious performance gain and
significantly reduces energy consumption within skiperscalar architecture.

5. Selective Instruction Reuse and Value Predictiom SMT Architectures

As a final objective of this research, we quandifiee impact of our developed techniques
for anticipating long-latency instructions resulits a simultaneous multithreaded

architecture that implies per thread RB and LVResbWe developed a Reuse Buffer and
a Trivial Operation Detector for MUL and DIV insttions respectively a Last Value
Predictor for critical Load instructions, and weeigrated all these structures into the M-
Sim simulator [Sha05]. M-Sim supports single thezh@xecution (superscalar mode) as
well as the multithreaded mode in which multipleetids of control are executed
simultaneously, according to the Simultaneous Nhkaded (SMT) model [Egg97]. In
the SMT mode, some processor structures (i.e. ispueie, physical register files,
functional units, caches) are shared among thadisreand others (rename tables, ROBs,
Load/Store Queues, branch predictors) are privagath thread (see Figure 6).

i| Physical i ; !
!| Register |1 ! Functional | |
File i i Units

OB

Branch Fetch || Rename Issue .

Predictor unit [%] Cache —» Decod Table Queue | .
| RB

! :4— D-Cache

V| LVPT [}

A

Figure 6. SMT architecture enhanced with selective instacteuse and value prediction

Threads maintain separate program counters (PQ)stare the fetch unit and I-
Cache. Threads share the available bandwidth ifrdiné end, including fetch, decode and
renaming. The M-Sim implements the well known ICOUNetch policy, by default,
fetching from up to two threads per cycle. The MiSias implemented separate branch
predictors per thread, which provide the best perémce for multithreaded processors.
The Reorder Buffers (ROB) as well as our Reused@sffRB) and Load Value Prediction
Tables (LVPT) are private. Each thread maintaisoivn rename table because it has its
own set of architectural registers. After renamimgstructions from all threads are
dispatched into the shared Issue Queue. In the IQseue, instructions from all threads
participate in instruction wakeup and compete foe issue bandwidth in selection.
Instructions that are selected for issue contimueegister file access. There are separate
integer and floating-point physical register filémth being shared among threads. After
register file access is complete, instructions megiecution on the functional units, which
are also shared. Loads and Stores access the sta@ieedache. In order to maintain the
correct ordering of memory accesses, the Load/Spareue (LSQ) is used. The M-Sim
uses separate LSQs per thread, so that an unrdsatidress from one thread does not
prevent Loads in other threads from issuing. Aébegcution, instructions write back to the
register files. Commitment is done in order forrettwread.

5.1. Simulation Methodology

For the superscalar architecture we evaluated fRREC 2000 suite seven integer
benchmarks lzip, gcg gzip, mcf, parser, twolf, vpr) and six floating-point benchmarks
(apply, equake galgel lucas mesa mgrid). In SMT mode, the M-Sim runs multiple
benchmarks as different threads in parallel. Tlheegfwe combined benchmarks into
groups of 2, 3 or 6 depending on the simulated Sivthitecture. Thus, we usetZip,
gcqg, { gzip parset, { twolf, vpr}, { applu equaké, { galgel lucag, { mesamgrid} for our
SMT with 2 threads, §zip, gcc gzig, { parser, twolf, vpr}, {applu equake galgel,
{lucas mesamgrid} for the SMT with 3 threads, andgip, gcg gzip, parser, twolf, vpr},

{applu equake galgel lucas mesa mgrid} for the 6-threaded SMTTable 1 presents
some important parameters of the simulated architec

Execution unit Number of units Operation latency
intALU 4 1
Execution Latencies| intMULT / intDIV 1 3/20
fpALU 4 2
fpMULT / fpDIV 1 4/12

Superscalarity Fetch/ Decode/ Issue/ Commit width = 4
Branch predictor | bimodal predictor with 2048 entries

Memory unit Access Latency
4-way associative L1 data cache, 32 KB 1 cycle

Caches and — -

Memory 8-way associative unified L2 data caché&,cycles

512 KB
Memory 100 cycles
Register File: 32 INT / 32 FP

Resources Reorder Buffer (ROB): 128 entries

Load/Store Queue (LSQ):48 entries
Table 1. Parameters of the simulated architecture

M-Sim facilitates the power estimation as supphbgdhe Wattch framework [Bro00]. The
dynamic power consumption measurements are gederadag an 80 nm CMOS
technology:

P, =CIV/ [@aLf 3)
whereC is the capacitance, generated usagti [Shi01], Vyq is the supply voltage, arfd
is the clock frequencyyq andf depend on the assumed process technology. Thatyacti
factor a indicates how often clock ticks lead to switchiagtivity on average. For the
energy measurements, we used the Energy-Delay &r@widely used metric [Bro00]:

Total Power

5.2. Experimental Results

We measured the IPC and the dynamic power consompif the proposed SMT
architecture by varying the number of threads. FBgw and 8 present the IPC obtained by
evaluating our developed superscalar and SMT aites with respectively without
Reuse Buffer and Load Value Predictor. Accordingto previous results, we optimally
sized the RB respectively the LVPT to 1024 entries.

2,4
2,3
2,2 =
2,1 I
& 19 s T |O SMTwith RB & LVPT
1,8 - g I
L7 g 5 . N
1,6 r - - T
1,5 . I - 1
1 2 3 6
Threads

Figure 7. IPC obtained with respectively without RB & LVPT theintegerbenchmarks

B SMT

O SMT with RB &
LVPT

IPC
DNNPNNDNDND W
orRrNwhuUON®OO

S iF

1 2 3 6

Threads

Figure 8. IPC obtained with respectively without RB & LVPT thefloating-pointbenchmarks

Figures 7 and 8 show that the RB and LVPT strustungprove the IPC on all
evaluated configurations. However, the highest oupment was obtained with one
thread, and as the number of threads grows, theirifovement becomes lower (see
Figure 8). With fewer threads, the ten shared fonel units (see Table 1) are underused
and therefore the selective instruction reuse aaldiev prediction techniques have an
important improvement potential. With a higher nambf threads, the same ten functional
units are highly used, thus both the instructiomseeand value prediction mechanisms
becoming less important. Therefore, especially loatihg-point benchmarks, with six
threads we obtained the best IPC but the lowestivel IPC speedup (see Figures 7 and 8).

Finally, we evaluated, for different number of s, the IPC speedup and the EDP
gain of a SMT architecture enhanced with Selectinstruction Reuse and Value
Prediction against a classical SMT architecture.Filgure 9 the first and third bars
represent the EDP gains obtained with our supens¢ahe thread) and SMT architecture
(2, 3 and 6 threads) on the floating-point respetyi integer benchmarks, whereas the
second and fourth bars presents the IPC speedbjgvead with the same architectures. As
Figure 9 depicts, the RB and LVPT structures acddd¥C speedups and EDP gains on all
the simulated configurations. The best improvementthe integer benchmarks have been
obtained with 2 threads: an IPC speedup of 5.958aanEDP gain of 10.44%. Although,
on the floating-point benchmarks, we obtained thghdst improvements with the
enhanced (LVPT + RB) superscalar architecture Stkid with 3 threads also provides an
important IPC speedup of 16.51% and an EDP gaitb&i4%. Analyzing Figures 7 and 8
we can observe the advantage of SMT architectuyagst the superscalar architecture
irrespective these are enhanced or not with seteatstruction reuse and value prediction
mechanism.

40%

35% +—=
30% -+ O FP - EDP Gain
25% A
200/2 | ; _ @ FP - IPC Speedup
15% | ; @ INT - EDP Gain
10% H ; B INT - IPC Speedup
5% A
Al

1 2 3 6

Threads

Figure 9. Relative IPC speedup and EDP gain (enhanced SMdlassical SMT) by varying the
number of threads

10

6. Conclusions and Further Work

In this work we made the following contributiondgrst, we have gained additional
knowledge about branch behavior and predictabiliz mainly developed some random
degrees associated to a certain branch based on lghNictability, discrete entropy,
compression rate and respectively program’s Kolmmga@omplexity. All these random
degree metrics could practically help the compatehitect to better understand branches’
predictability and if the branch predictor should mproved related to the unbiased
branches. They are showing how much intrinsic ramtkss a string of symbols and,
particularly, our discovered unbiased branchesatontf some difficult branches are not
intrinsic random according to our metrics, theiegiction accuracy could be further
improved by the researcher. Otherwise, if thesendiras are proving to be intrinsic
random, the answer is a pessimistic one, generatipgwerful limitation in Computer
Architecture.

The second contribution is starting from the ladketiiciency of state of the art
branch predictors to accurately predict unbiasezhdites. We developed an improved
piecewise linear branch predictor to successfullgdgt unbiased branches. However,
even this idealized powerful predictor obtained ewichverage prediction accuracy on the
unbiased branches (78.3%) while its global avenageliction accuracy is of 95.45%.
Other very powerful general predictors, like ourveleped HMMs, predict unbiased
branches with an even lower average accuracy. fdrerepredicting unbiased branches
still represents a hard challenge. Computer Arctsteannot therefore continue to expect a
prediction accuracy improvement with present-dagdpmtion techniques and alternative
approaches are necessary. Taking into accounathiatportant fraction of branches are in
the same time unbiased and dependent by criticad$,owe developed a superscalar
architecture that selectively anticipates the v&lpeoduced by high-latency instructions
inclusively in order to reduce the negative impafctinbiased branches in ILP processors.
The experimental results, performed on the SPE® 2#hchmarks, show a significant
IPC speedup and reduced energy consumption fqrdposed architecture.

As the third contribution, we quantify the impact our developed selective
instruction reuse and value prediction techniquesai simultaneous multithreaded
architecture. The new architecture enhanced withaR& LVPT structures achieved IPC
speedups and EDP gains on all the simulated caatigns. The best improvements on the
integer benchmarks have been obtained with 2 teresad IPC speedup of 5.95% and an
EDP gain of 10.44%. Although, on the floating-pdieihchmarks, we obtained the highest
improvements with the enhanced (LVP + Reuse) suopknsarchitecture, the SMT with 3
threads also provides an important IPC speedu®&@l1% and an EDP gain of 25.94%.
With fewer threads, the shared functional units warderused and therefore the selective
instruction reuse and value prediction techniqguesehan important improvement
potential. With a higher number of threads, the es&nmctional units are highly used, thus
both the instruction reuse and value prediction maaisms becoming less important.
Therefore, especially on floating-point benchmarkih six threads we obtained the best
IPC but the lowest relative IPC speedup. Also, wa observe the advantage of SMT
architectures against the superscalar architecgttegspective these are enhanced or not
with selective instruction reuse and value preditthechanism.

A next step of our research is to apply the knogtedjained about unbiased
branches to design a novel dedicated predictioorigign, that provides better results than
previous proposals. Also, as a further work it vdobe useful to quantify the unbiased
branch ceiling in a multicore architecture. Undamsling, implementing and quantifying

11

instruction reuse and value prediction benefita multicore architecture might be another
very important challenge for the future.

Acknowledgments

This work was partially supported by the Romaniaatidbhal Council of Academic

Research (CNCSIS) through the research grants B2Ra07 and A-39/2007. We like to
thank to Professor Solomon Marcus, member of thedwan Academy, for providing

some useful references and for competently expiginsome concepts related to
randomness’ approaches.

References

[Bro00] Brooks D., Tiwari V., Martonosi MWattch: A Framework for Architectural -
Level Power Analysis and Optimizatipngnternational Symposia on Computer
Architecture, Vancouver, 2000.

[Cor01] Thomas H. Cormen, Charles E. Leiserson,dRbh. Rivest, and Clifford Stein -
Introduction to Algorithms Section 16.3, pp.385-392, Second Edition, MITsBPrand
McGraw-Hill, 2001.

[Egg97] Eggers S. Emer J., Levy H., Lo J., Stamm Rillsen D., Simultaneous
Multithreading: A Platform for Next-Generation Pexsors IEEE Micro, Vol 17, Issue 5,
September 1997.

[Gao08] Gao H., Ma Y., Dimitrov M., Zhou H. Address-Branch Correlation: A Novel
Locality for Long-Latency Hard-to-Predict Branchekhe 14" International Symposium
on High Performance Computer Architecture, Saltd_&lity, Utah, February 2008.

[Gel06] Gellert A., Florea A. Finding and Solving Difficult Predictable Branches
Science and Supercomputing in Europe, BarceloransSp006.

[Gel07] Gellert A., Florea A., Viian M., Egan C., Vitan L. —Unbiased Branches: An
Open Problem Lecture Notes in Computer Science, Advances im@der Systems
Architecture, vol. 4697, pp. 16-27, Springer-Verkgylin / Heidelberg, 2007.

[Gel08] Gellert A., Florea A., Viian L. — Exploiting Selective Instruction Reuse and
Value Prediction in a Superscalar Architectur8ubmitted to Journal of Systems
Architecture, ISSN: 1383-762[E|sevier, 2008.

[Gzip] http://www.gzip.org/

[JImO5] Jiménez D. -ldealized Piecewise Linear Branch Predictiodournal of
Instruction-Level Parallelism, April 2005.

[Rab89] Rabiner L. R. A Tutorial on Hidden Markov Models and Selectedlispfons in
Speech RecognitipiProceedings of the IEEE, Vol. 77, No. 2, Febru3§9.

[Sha05] Sharkey J., Ponomarev D., Ghose M:-SIM: A Flexible, Multithreaded
Architectural Simulation Environmentechnical Report CS-TR-05-DP01, Department of
Computer Science, State University of New York aeigBamton, October 2005.

[Shi01] Shivakumar P., Jouppi N. Eacti 3.0: An Integrated Timing, Power, and Area
Model WRL Research Report, Aug 2001, USA.

[SPEC] SPEC2000;he SPEC benchmark prograrsp://www.spec.org

[Vin06] Vintan L., Gellert A., Florea A., Oancea M., Egan @Jnrderstanding Prediction
Limits through Unbiased Branchekecture Notes in Computer Science, Advances in
Computer Systems Architecture, vol. 4186, pp. 480;:&pringer-Verlag Berlin, 2006.
[VIin08] Vintan L., Florea A., Gellert A. -Random Degrees of Unbiased Branches
Submitted to Proceedings of the Romanian Academyie$ A: Mathematics, Physics,
Technical Sciences, Information Science, ISSN 19339, Bucharest, 2008.

12

