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Abstract:  In our previously published research we discovered some very difficult to 
predict branches, called unbiased branches that have a “random” dynamic behavior. We 
developed some state of the art branch predictors to successfully predict them. Even these 
powerful predictors obtained very modest average prediction accuracies on the unbiased 
branches whereas their global average prediction accuracies are high. The unbiased 
branches still restrict the ceiling of dynamic branch prediction and therefore accurately 
predicting them remains an open problem. Since the overall performance of modern 
superscalar processors is seriously affected by misprediction recovery, especially these 
difficult branches represent a source of important performance penalties. Our statistics 
show that about 28.68% of branches are dependent on critical Load instructions. Moreover, 
5.61% of branches are unbiased and depend on critical Loads, too. These dependences 
involve high-penalty mispredictions becoming serious performance obstacles and causing 
significant performance degradation. The negative impact of (unbiased) branches over 
global performance should be seriously attenuated by anticipating the results of long-
latency instructions, including critical Loads. On the other hand, hiding instructions’ long 
latencies in a pipelined superscalar processor represents an important challenge itself. 

In this work we focused on three main objectives: first, we proposed several metrics 
for characterizing the unbiased branches from the random degree viewpoint, to effectively 
help the computer architect to better understand branches’ predictability and also if the 
predictor should be improved related to unbiased branches. Starting from the dynamical 
behavior of unbiased branches, we tried to understand in more depth what randomness is. 
Based on a hybrid mathematical and computer science approach we mainly developed 
some random degrees associated to a branch. These metrics are: program’s Kolmogorov 
complexity, compression rate, discrete entropy and HMM-based prediction accuracy, that 
are useful for characterizing strings of symbols and particularly, our unbiased branches’ 
behavior. If some difficult branches are not “intrinsic” random according to our metrics, 
their prediction accuracy might be further improved. Otherwise, the answer is a pessimistic 
one, generating a powerful limitation in Computer Architecture. 

As the second aim of this paper, we developed a superscalar architecture that 
selectively anticipates the values produced by high-latency instructions. We are focusing 
on Multiply, Division and Loads with miss in L1 Data Cache, implementing a Dynamic 
Instruction Reuse (DIR) scheme for the Mul/Div instructions and respectively a Last Value 
Predictor (LVP) for the critical Load instructions. 

As a final objective of our research, we quantify the impact of our developed 
Selective Instruction Reuse and Value Prediction techniques in a simultaneous 
multithreaded architecture (SMT) that implies per thread Reuse Buffers (RB) and LVP 
tables. We measure the IPC and the dynamic power consumption of the proposed SMT 
architecture by varying the number of threads. Also, we evaluate, for different number of 
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threads, the IPC speedup and the EDP gain of a SMT architecture enhanced with Selective 
Instruction Reuse and Value Prediction against a classical SMT architecture. 
 
Keywords: ILP processors, branch prediction, unbiased branches, discrete entropy, 
random degree, dynamic instruction reuse, load value prediction, speculative execution, 
SMT architecture, power consumption 
 
 
1. Introduction 
 
The branch prediction becomes a challenge problem for processors’ designers. Without 
performing branch prediction it won’t be possible to aggressively exploit program’s 
instruction level parallelism (ILP). All present branch prediction techniques are limited in 
their accuracy. An important limitation cause is given by the used prediction contexts 
(global and local histories respectively path information). In our previous work, we show 
that, irrespective of the prediction information length and type, used in the state of the art 
branch predictors, some branches are unbiased and non-deterministically shuffled, and are 
characterized by low prediction accuracies (at average about 70%) [Vin06, Gel07]. 
Unbiased branches are unpredictable because their behavior’s nature is still not deeply 
understood, based on a qualitative and quantitative approach. Rigorously defining and 
understanding unbiased branches means to rigorously know what randomness is. Without 
effectively understanding their “random” behavior we cannot expect to develop accurate 
predictors. We started from the following fundamental question: could a deterministic 
program generate some branches having a “random behavior” ? Unfortunately, the answer 
is not simple. Based on a combined mathematical and computer science approach, we 
proposed and developed, as the first aim of this paper, some random degree metrics, like 
program’s Kolmogorov complexity, compression rate, discrete entropy and HMM (Hidden 
Markov Model [Rab89]) based prediction accuracy, that might be useful for characterizing 
strings of symbols and particularly, our unbiased branches’ behavior. All these random 
degree metrics could really help the computer architect to understand in more depth the 
nature of a certain branch and also if the branch predictor should be improved in order to 
accurately predict even the corresponding unbiased branches. Our developed branch 
random degrees could effectively help in quantifying program’s predictability, too. 

Since the overall performance of modern superscalar processors is seriously affected 
by misprediction recovery, these difficult branches represent a source of important 
performance penalties. As we pointed out in [Gel06], 28.68% of branches are dependent on 
critical Load instructions (Loads with miss in the L2 data cache that reach the head of the 
Reorder Buffer), and 5.61% are unbiased and dependent on a previously committed critical 
Load instruction. Such unbiased (or at least hard-to-predict) branches occur in pointer 
chasing applications based on linked list traversal: 

(e.g.,  while (node)    // Branch B 
    node = node�next // Load L). 

In hereinbefore example, since Branch B depends on Load L, a branch misprediction 
cannot be solved until Load L returns the value. If Load L has a high L2 cache miss rate, 
the branch misprediction penalties of Branch B will have significant impact on the overall 
performance. For example, the average misprediction penalty of such a branch, measured 
as the latency between fetching the branch instruction and resolving the misprediction, is 
about 540 cycles, considering a L2 cache miss penalty of 300 cycles [Gao08]. Thus, the 
forementioned dependences involve high-penalty mispredictions becoming serious 
performance obstacles and causing significant performance degradation in executing 
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instructions from wrong paths. Therefore, the negative impact of mispredicting branches, 
particularly of mispredicting unbiased branches over the global performance should be 
seriously attenuated by anticipating the results of long-latency instructions. On the other 
hand, hiding instructions’ long latencies in a pipelined superscalar processor represents an 
important challenge itself. 

As the second aim of this work we developed a superscalar architecture that 
selectively anticipates the values produced by high-latency instructions. We will focus on 
Multiply, Division and Loads with miss in the L1 data cache. These instructions would be 
solved by a Dynamic Instruction Reuse scheme. However, an additional Reuse Buffer for 
Load Value (Data) Reuse is not necessary, because a similar reuse mechanism is already 
provided by the existing L1 and L2 data caches. Therefore, the Load instructions with miss 
in the L1 data cache (selective approach) would be solved through value prediction. 

As a final objective of our research, we quantify the impact of our developed 
Selective Instruction Reuse and Value Prediction techniques in a simultaneous 
multithreaded architecture that implies per thread Reuse Buffers and LVP tables. We 
measure the IPC and the dynamic power consumption of the proposed SMT architecture 
by varying the number of threads. Also, we evaluate, for different number of threads, the 
IPC speedup and the EDP gain of a SMT architecture enhanced with Selective Instruction 
Reuse and Value Prediction against a classical SMT architecture. 

The organization of the rest of this paper is as follows: Section 2 contains our last 
developments in understanding and predicting unbiased branches. During Section 3 we 
make a qualitative and quantitative analysis of four distinct metrics to characterize the 
random degree for a certain dynamic branch. Section 4 describes the two techniques that 
we implemented for anticipating the results of long-latency instructions. In Section 5 we 
quantify the impact of DIR and VP techniques in SMT Architectures. The last Section 
debates and concludes on the most important obtained results and proposes some further 
work. 
 
 
2. Understanding and Predicting Unbiased Branches 
 
According to our previous work, the percentages of unbiased branches are quite 
significant, depending on the different used contexts and their lengths, giving a new 
research challenge and a useful niche for branch prediction research. Through this paper 
we showed that these difficult predictable branches cannot be well-predicted even using 
efficient state of the art predictors. Thus, we specially developed two idealized powerful 
branch predictors: an improved idealized piecewise linear branch predictor [Jim05] and a 
HMM-based branch predictor. Unbiased branches need some specific efficient predictors 
that are using some new, more relevant prediction information. Finding a new relevant 
context to significantly reduce the number of unbiased shuffled branches remains an open 
problem. 

In our experiments we concentrated only on SPEC 2000 benchmarks [SPEC] with a 
fraction of unbiased branches greater than 1%. Following this methodology, 6 integer 
benchmarks fulfilled this condition. As a consequence, in Sections 2 and 3 we have 
simulated only these difficult predictable benchmarks (gzip, bzip, mcf, parser, twolf, gcc). 
Figure 1 presents the prediction accuracies obtained with the idealized piecewise linear 
branch predictor (PW) on all branches respectively on the unbiased branches, using the 
previous global dynamic branch’s condition value (PBV) as an additional prediction 
information [Vin08]. The first two bars represent the prediction accuracies on all branches 
respectively on unbiased branches, obtained with the idealized piecewise linear branch 
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predictor. The rest of the bars were obtained using PBV (32 bits) as additional prediction 
information, varying the number of weights (from 8590 up to 30713). 
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Figure 1. The prediction accuracies obtained with piecewise linear branch predictor on unbiased 
branches versus all branches, using the global PBV as additional prediction information 

Analyzing Figure 1 it can be observed how the PBV value determines the 
improvement of unbiased branch prediction accuracy overcoming with at least 1% the best 
state of the art predictor’s performance. Even if the improvement seems less significant, it 
is very clear how this small percentage contributes to the global prediction accuracy (value 
that overcome with more than 0.53% the best state of the art predictor’s performance). 

Therefore, the unbiased branches behavior is practically unpredictable. Why this? 
Are these special branches unpredictable due to some relevant information misses or are 
they “intrinsic random”? However, they were obtained by compiling some deterministic 
programs; therefore they were not randomly generated. But... what is random? During the 
next paragraph we make a qualitative and quantitative analysis of four distinct metrics to 
characterize the random degree for a certain dynamic branch. These metrics could help us 
to better understand the unbiased branches behavior and their potential predictability. 
 
 
3. Random degree metrics for characterizing unbiased branches’ behavior 
 
Like in Section 2, we used the same 6 difficult predictable SPEC 2000 benchmarks 
simulating one billion dynamic instructions for each one, skipping the first 300 million 
instructions. It was considered a 16-bit global history context for each branch. We selected 
from each benchmark very frequently processed (hundreds of thousands instances per a 
certain context) strongly unbiased branch contexts having low polarization indexes 
(P(S)∈[0.501, 0.565]) and respectively strongly biased contexts with high polarization 
indexes (P(S)∈[0.979, 0.997]). The polarization index was defined in [Vin06]. Each 
context has associated a binary string representing its behavior. This binary string 
represents the input sequence for the HMM predictor developed by us in paragraph 3.1. 
During paragraph 3.2 we calculated the random degrees associated to the same binary 
strings based on their entropy. In paragraph 3.3 we calculated the compression rates 
corresponding to the same branches’ behaviors, as with random degrees. 
 
3.1. Random degree based on HMMs 
 
During this paragraph we considered a per branch local history of 64 bits. Using a longer 
history significantly complicated our developed HMM predictors and grew up the 
computing time. We modified the number of hidden states of the HMM in order to 
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maximize the prediction accuracy. Anyway, our proposed metric is quantitatively very 
relevant. 

Figure 2 comparatively presents, for unbiased and biased branches, the average 
prediction accuracies obtained by our optimal HMM (R=1, N=2). There is a significant 
difference between the average prediction accuracy on biased branches (98.43%) and 
respectively on unbiased branches (65.03%). As we expected, the HMM predictor obtains 
an excellent average prediction accuracy on biased branches showing its significant 
prediction power. Unfortunately even these powerful predictors cannot accurately predict 
unbiased branches. This fact suggests that unbiased branches are “intrinsic random” in 
some way, being generated by very complex program structures. 
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Figure 2. Prediction accuracies using the best evaluated HMM (R=1, N=2) 

 
3.2. Random degree based on discrete entropy 
 
In this paragraph we considered as the random degree of a binary sequence RD(S), the 
product between discrete entropy E(S) and shuffle degree D(S) associated to S [Vin08]. 
Thus, )()()( SESDSRD ⋅= . Figure 3 shows statistical results concerning the random 
degree of (biased and respectively unbiased) binary sequences obtained through the 
previously exposed methodology. 
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Figure 3. The random degree of biased respectively unbiased branches 

Since our initial supposition was that biased branches sequences should have a lower 
random degree, the simulation results confirm that the RD(S) metric represents a good 
measure for random degree of binary sequences. A random degree around 40% shows that 
respective unbiased branch is difficult or, practically, even impossible to be accurately 
predicted. 
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3.3. Random degree based on compression rate and program’s Kolmogorov complexity 
 
The compression rate of a symbols sequence (or the space savings due to its compression), 
provided by the well-known lossless compression algorithms such Huffman and Gzip, 
could represent another effective metric for characterizing the random degree of that 
sequence. 

Further we transformed in extended ASCII files the binary sequences generated by 
unbiased respectively biased branches behavior obtained through the methodology exposed 
in Section 3. We grouped 8-bit sequences and generate the corresponding ASCII codes. 
We compressed these files using the Gzip utility [Gzip] and respectively an own developed 
application that implements Huffman encoding based on [Cor01]. We based our statistics 
on two commonly used metrics in data compression: 

%100⋅=
SizeCompressed

SizeedUncompress
RatenCompressio     (1) 

%1001 ⋅







−=

SizeedUncompress

SizeCompressed
SavingsSpace     (2) 

In Figure 4, we illustrate the space savings obtained by compression of biased 
respectively unbiased branches with the previously described algorithms (Gzip and 
Huffman). The main conclusion refers to the space savings obtained through unbiased 
branches compression (19.15% with the Gzip utility) that are significantly lower than those 
obtained through biased branches compression (90.37% with Gzip). 
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Figure 4. Space savings using the Gzip and Huffman algorithms 

The Kolmogorov complexity of code sequence that effectively generates unbiased 
branches could be a useful metric for describing the random degree, too. Thus, the 
unbiased branches complexity should be higher than the other conditional branches 
complexity. Nevertheless, Kolmogorov complexity has a static nature while it tries to 
characterize the dynamic behavior of a certain branch. On the other hand this metric is the 
single one that emphasizes the semantic complexity of the corresponding generator code 
sequence. Based on analysis of many integer recursive benchmarks we have reasons to 
believe that recurrence combined with some certain conditional branches will generate 
branches with unbiased behavior and thus with high Kolmogorov complexity. Such 
examples occur in the link lists or trees cases where the address of an element is tested and 
followed by a recurrent call of the same function to test the next element in the tree. 
 
 



 7 

4. Anticipating Long-Latency Instructions Results 
 
Further we developed a superscalar architecture that selectively anticipates the values 
produced by high-latency instructions. This is particularly useful in order to reduce the 
negative impact of unbiased branches in superscalar processors, too. The reusability degree 
of MUL and DIV instructions, measured with an unlimited Reuse Buffer, was 28.9% on 
the integer (INT) benchmarks and 61.9% on the floating-point (FP) benchmarks. These 
instructions would be solved by a DIR scheme. We also detected and reused the results of 
trivial operations like V*0, V*1, 0/V, V/1 and V/V. The reusability degree of Load values 
was 77.4% on the integer benchmarks and 76.4% on the floating-point benchmarks. 
However, an additional Reuse Buffer for Load Value (Data) Reuse is not necessary, 
because a similar reuse mechanism is already provided by the existing L1 and L2 data 
caches. Therefore, the Load instructions with miss in the L1 data cache (selective 
approach) would be solved through a simple Last Value Predictor. The hardware structures 
used for selective instruction reuse and load value prediction and their functionality 
mechanism are detailed in [Gel08]. 

Figure 5 presents the relative IPC speedup and the relative energy-delay product 
(EDP) improvement for the integer respectively floating-point SPEC 2000 benchmarks. 
The EDP represents the processor’s total power, divided by the squared IPC. We 
determined the energy-delay product for the architecture without RB and LVPT 
respectively for the architecture with a RB of 1024 entries and LVPTs of different sizes. 
The EDP Gain represents the relative energy-delay product improvement for each LVPT 
size. As it can be observed, the optimal LVPT size is 1024. 
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Figure 5. Relative IPC speedup and relative energy-delay product gain with a Reuse Buffer of 

1024 entries, the Trivial Operation Detector, and the Load Value Predictor 

Predicting critical Load instructions through an additional Last Value Predictor, 
improves the IPC with 3.5% on the integer benchmarks respectively with 23.6% on the 
floating-point benchmarks. This significant speedup lowers the energy consumption with 
6.2% on the integer benchmarks respectively with 34.5% on the floating-point 
benchmarks. This difference occurs because the number of critical Loads is more than 
twice higher in the floating-point benchmarks. Consequently, selectively applying some 
well-known techniques on long-latency instructions provides serious performance gain and 
significantly reduces energy consumption within the superscalar architecture. 
 
 
5. Selective Instruction Reuse and Value Prediction in SMT Architectures 
 
As a final objective of this research, we quantified the impact of our developed techniques 
for anticipating long-latency instructions results in a simultaneous multithreaded 
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architecture that implies per thread RB and LVP tables. We developed a Reuse Buffer and 
a Trivial Operation Detector for MUL and DIV instructions respectively a Last Value 
Predictor for critical Load instructions, and we integrated all these structures into the M-
Sim simulator [Sha05]. M-Sim supports single threaded execution (superscalar mode) as 
well as the multithreaded mode in which multiple threads of control are executed 
simultaneously, according to the Simultaneous Multithreaded (SMT) model [Egg97]. In 
the SMT mode, some processor structures (i.e. issue queue, physical register files, 
functional units, caches) are shared among the threads, and others (rename tables, ROBs, 
Load/Store Queues, branch predictors) are private to each thread (see Figure 6). 
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Figure 6. SMT architecture enhanced with selective instruction reuse and value prediction 

Threads maintain separate program counters (PC), but share the fetch unit and I-
Cache. Threads share the available bandwidth in the front end, including fetch, decode and 
renaming. The M-Sim implements the well known ICOUNT fetch policy, by default, 
fetching from up to two threads per cycle. The M-Sim has implemented separate branch 
predictors per thread, which provide the best performance for multithreaded processors. 
The Reorder Buffers (ROB) as well as our Reuse Buffers (RB) and Load Value Prediction 
Tables (LVPT) are private. Each thread maintains its own rename table because it has its 
own set of architectural registers. After renaming, instructions from all threads are 
dispatched into the shared Issue Queue. In the Issue Queue, instructions from all threads 
participate in instruction wakeup and compete for the issue bandwidth in selection. 
Instructions that are selected for issue continue to register file access. There are separate 
integer and floating-point physical register files, both being shared among threads. After 
register file access is complete, instructions begin execution on the functional units, which 
are also shared. Loads and Stores access the shared data cache. In order to maintain the 
correct ordering of memory accesses, the Load/Store Queue (LSQ) is used. The M-Sim 
uses separate LSQs per thread, so that an unresolved address from one thread does not 
prevent Loads in other threads from issuing. After execution, instructions write back to the 
register files. Commitment is done in order for each thread. 
 
5.1. Simulation Methodology 
 
For the superscalar architecture we evaluated from SPEC 2000 suite seven integer 
benchmarks (bzip, gcc, gzip, mcf, parser, twolf, vpr) and six floating-point benchmarks 
(applu, equake, galgel, lucas, mesa, mgrid). In SMT mode, the M-Sim runs multiple 
benchmarks as different threads in parallel. Therefore, we combined benchmarks into 
groups of 2, 3 or 6 depending on the simulated SMT architecture. Thus, we used {bzip, 
gcc}, { gzip, parser}, { twolf, vpr}, { applu, equake}, { galgel, lucas}, { mesa, mgrid} for our 
SMT with 2 threads, {bzip, gcc, gzip}, { parser, twolf, vpr}, { applu, equake, galgel}, 
{ lucas, mesa, mgrid} for the SMT with 3 threads, and {bzip, gcc, gzip, parser, twolf, vpr}, 
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{ applu, equake, galgel, lucas, mesa, mgrid} for the 6-threaded SMT. Table 1 presents 
some important parameters of the simulated architecture: 
 

Execution unit Number of units Operation latency 
intALU 4 1 
intMULT / intDIV 1 3 / 20 
fpALU 4 2 

Execution Latencies 

fpMULT / fpDIV 1 4 / 12 
Superscalarity Fetch / Decode / Issue / Commit  width = 4 

Branch predictor bimodal predictor with 2048 entries 
Memory unit Access Latency 
4-way associative L1 data cache, 32 KB 1 cycle 
8-way associative unified L2 data cache, 
512 KB 

6 cycles 
Caches and 

Memory 

Memory 100 cycles 
Register File: 32 INT / 32 FP 
Reorder Buffer (ROB): 128 entries Resources 
Load/Store Queue (LSQ): 48 entries 

Table 1. Parameters of the simulated architecture 

M-Sim facilitates the power estimation as supplied by the Wattch framework [Bro00]. The 
dynamic power consumption measurements are generated using an 80 nm CMOS 
technology: 

faVCP ddd ⋅⋅⋅= 2         (3) 
where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply voltage, and f 
is the clock frequency. Vdd and f depend on the assumed process technology. The activity 
factor a indicates how often clock ticks lead to switching activity on average. For the 
energy measurements, we used the Energy-Delay Product, a widely used metric [Bro00]: 

2IPC

PowerTotal
EDP =         (4) 

 
5.2. Experimental Results 
 
We measured the IPC and the dynamic power consumption of the proposed SMT 
architecture by varying the number of threads. Figures 7 and 8 present the IPC obtained by 
evaluating our developed superscalar and SMT architectures with respectively without 
Reuse Buffer and Load Value Predictor. According to our previous results, we optimally 
sized the RB respectively the LVPT to 1024 entries. 
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Figure 7. IPC obtained with respectively without RB & LVPT on the integer benchmarks 
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Figure 8. IPC obtained with respectively without RB & LVPT on the floating-point benchmarks 

Figures 7 and 8 show that the RB and LVPT structures improve the IPC on all 
evaluated configurations. However, the highest improvement was obtained with one 
thread, and as the number of threads grows, the IPC improvement becomes lower (see 
Figure 8). With fewer threads, the ten shared functional units (see Table 1) are underused 
and therefore the selective instruction reuse and value prediction techniques have an 
important improvement potential. With a higher number of threads, the same ten functional 
units are highly used, thus both the instruction reuse and value prediction mechanisms 
becoming less important. Therefore, especially on floating-point benchmarks, with six 
threads we obtained the best IPC but the lowest relative IPC speedup (see Figures 7 and 8). 

Finally, we evaluated, for different number of threads, the IPC speedup and the EDP 
gain of a SMT architecture enhanced with Selective Instruction Reuse and Value 
Prediction against a classical SMT architecture. In Figure 9 the first and third bars 
represent the EDP gains obtained with our superscalar (one thread) and SMT architecture 
(2, 3 and 6 threads) on the floating-point respectively integer benchmarks, whereas the 
second and fourth bars presents the IPC speedups achieved with the same architectures. As 
Figure 9 depicts, the RB and LVPT structures achieved IPC speedups and EDP gains on all 
the simulated configurations. The best improvements on the integer benchmarks have been 
obtained with 2 threads: an IPC speedup of 5.95% and an EDP gain of 10.44%. Although, 
on the floating-point benchmarks, we obtained the highest improvements with the 
enhanced (LVPT + RB) superscalar architecture, the SMT with 3 threads also provides an 
important IPC speedup of 16.51% and an EDP gain of 25.94%. Analyzing Figures 7 and 8 
we can observe the advantage of SMT architectures against the superscalar architecture 
irrespective these are enhanced or not with selective instruction reuse and value prediction 
mechanism. 
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Figure 9. Relative IPC speedup and EDP gain (enhanced SMT vs. classical SMT) by varying the 

number of threads 
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6. Conclusions and Further Work 
 
In this work we made the following contributions: first, we have gained additional 
knowledge about branch behavior and predictability. We mainly developed some random 
degrees associated to a certain branch based on HMM predictability, discrete entropy, 
compression rate and respectively program’s Kolmogorov complexity. All these random 
degree metrics could practically help the computer architect to better understand branches’ 
predictability and if the branch predictor should be improved related to the unbiased 
branches. They are showing how much intrinsic randomness a string of symbols and, 
particularly, our discovered unbiased branches contain. If some difficult branches are not 
intrinsic random according to our metrics, their prediction accuracy could be further 
improved by the researcher. Otherwise, if these branches are proving to be intrinsic 
random, the answer is a pessimistic one, generating a powerful limitation in Computer 
Architecture. 

The second contribution is starting from the lack of efficiency of state of the art 
branch predictors to accurately predict unbiased branches. We developed an improved 
piecewise linear branch predictor to successfully predict unbiased branches. However, 
even this idealized powerful predictor obtained modest average prediction accuracy on the 
unbiased branches (78.3%) while its global average prediction accuracy is of 95.45%. 
Other very powerful general predictors, like our developed HMMs, predict unbiased 
branches with an even lower average accuracy. Therefore, predicting unbiased branches 
still represents a hard challenge. Computer Architects cannot therefore continue to expect a 
prediction accuracy improvement with present-day prediction techniques and alternative 
approaches are necessary. Taking into account that an important fraction of branches are in 
the same time unbiased and dependent by critical Loads, we developed a superscalar 
architecture that selectively anticipates the values produced by high-latency instructions 
inclusively in order to reduce the negative impact of unbiased branches in ILP processors. 
The experimental results, performed on the SPEC 2000 benchmarks, show a significant 
IPC speedup and reduced energy consumption for the proposed architecture. 

As the third contribution, we quantify the impact of our developed selective 
instruction reuse and value prediction techniques in a simultaneous multithreaded 
architecture. The new architecture enhanced with RB and LVPT structures achieved IPC 
speedups and EDP gains on all the simulated configurations. The best improvements on the 
integer benchmarks have been obtained with 2 threads: an IPC speedup of 5.95% and an 
EDP gain of 10.44%. Although, on the floating-point benchmarks, we obtained the highest 
improvements with the enhanced (LVP + Reuse) superscalar architecture, the SMT with 3 
threads also provides an important IPC speedup of 16.51% and an EDP gain of 25.94%. 
With fewer threads, the shared functional units are underused and therefore the selective 
instruction reuse and value prediction techniques have an important improvement 
potential. With a higher number of threads, the same functional units are highly used, thus 
both the instruction reuse and value prediction mechanisms becoming less important. 
Therefore, especially on floating-point benchmarks, with six threads we obtained the best 
IPC but the lowest relative IPC speedup. Also, we can observe the advantage of SMT 
architectures against the superscalar architecture irrespective these are enhanced or not 
with selective instruction reuse and value prediction mechanism. 

A next step of our research is to apply the knowledge gained about unbiased 
branches to design a novel dedicated prediction algorithm, that provides better results than 
previous proposals. Also, as a further work it would be useful to quantify the unbiased 
branch ceiling in a multicore architecture. Understanding, implementing and quantifying 
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instruction reuse and value prediction benefits in a multicore architecture might be another 
very important challenge for the future. 
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