Exploring some
multicore research
opportunities.

A first attempt.

Ciprian Radu*, Horia Calborean®,
Adprian Florea*, Arpéd Gellért*, and
Lucian Vintan®

*ACAPS (http://acaps.ulbsibiu.ro/research.php), Lucian Blaga
University, Emil Cioran 4, 550025 Sibiu, Romania

ABSTRACT

Multicore architectures are currently the most common solution for further increasing the pro-
cessing performance since the methods for exploiting the Instruction Level Parallelism (ILP) have
reached a certain saturation point. However, we believe that multicores should still consider the
benefits provided by ILP exploitation mechanisms. In this respect, we consider integrating tech-
niques like Value Prediction and Dynamic Instruction Reuse into Chip Multiprocessor architec-
tures. Also, we present the need for evaluating multicore architectures by Automatic Design Space
Exploration.

KEYWORDS: Multicore; Value Prediction; Dynamic Instruction Reuse; Automatic Design Space Ex-
ploration

1 Introduction

Nowadays, computer architects are confronted with the power wall: the clock frequency
can no longer be increased because of the dynamic power consumption (P; = kCV?f) and
thermal dissipation. The performance can be grown only by architectural innovations, and
the essential challenge is to determine the optimal compromise between the processing per-
formance and the architectural complexity. Since the methods for exploiting the Instruction
Level Parallelism have reached a certain saturation point, the most common solution for
further increasing the performance is given by multicores because they provide a better
performance/Watt ratio than monoprocessors. However, multiprocessors involve parallel
programming, and writing a parallel program is more difficult than writing a sequential
program. Therefore, designing multicore systems must account for the productivity of the
programming process and for the performance of the software application too.

'E-mail: {ciprian.radu,horia.calborean,adrian.florea,arpad.gellert,lucian.vintan}@ulbsibiu.ro

http://acaps.ulbsibiu.ro/research.php

2 Research challenges

Currently, 99% of the software programs are sequentially written and as Amdahl’s law
shows, the sequential fraction of a program can dramatically limit the potential speedup
provided by multicores. Multicores should not neglect the ILP and their research should
consider the synergistic exploitation of different kinds of parallelism (pipeline, ILP, TLP,
tasks, data, etc.). Value Prediction and Dynamic Instruction Reuse techniques were devel-
oped in order to reduce the data-flow wall and, particularly, the program’s critical execution
path. In [GFV09] we have developed a mechanism of selective value anticipation dedicated
to high latency instructions, which includes a reuse scheme for MULs and DIVs, and a value
predictor for critical LOADs (miss in L2-cache). On a superscalar architecture, our results
show an IPC increase by 3.5% on the SPEC 2000 integer benchmarks and an increase by
23.6% on the floating point SPEC 2000 benchmarks. The Energy Delay Product decreases
with 6.2% in the case of the integer benchmarks and respectively with 34.5% for the floating
point benchmarks. We have also successfully applied those mechanisms into a Simultaneous
Multithreading Architecture.

2.1 Using Value Prediction in Multicores

In a multicore architecture a simple implementation of value prediction is incorrect be-
cause it can violate the memory consistency model [MSCT01]]. The next example shows that
even correctly predicting a LOAD can generate incorrect program execution. Processor P1

P1 ' P2
................................... e meememmmmssssmsssesmsmmmmmme—m—————
B->data = 30;
B->next = A;
head = B;
print(head->data);
data next
B | 20 head » & | 20
head A | 10 _ A | 10 17
""""""" Initial state [TTTTTTTTTTTT T TRinaistate 0T

Figure 1: Simple value prediction could violate memory consistency

changes the value from node B from 20 to 30 and before attaching it to the head of the list
(initially made only by node A). Processor P2 prints the value from the head of the list. If P2
would use value prediction, it could correctly predict that the head of the list will be node B,
and then it could print value 20 which is a violation of sequential consistency. Two detection
mechanisms for memory consistency violation are proposed. The first is based on addresses:
a processor must detect when another processor writes to an address that was speculatively
read. The other detection mechanism is rather based on values: each speculative load will

wait until its operands become non-speculative and then the load will be performed once
again (this time non-speculative).
2.2 Performing Dynamic Instruction Reuse in Multicores

We now consider a multicore architecture with DIR used in each core. The following pro-
gram is executed, considering a shared memory programming model. This program repre-

4 let k be a strictly positive integer number and let ¥V be a shared wvariable

int i = 0O;

while (i < k) {
bool new value_produced = false;
if (pthread self(] == 0] {

if (i = 0] {
A4 wait until the rest of the threads consuwme the previous walue

while (!previous_wvalues_consumed) ;
+
v = i; // thread 0 produces & new walue for each loop iteration
new_value produced = true:

1 else |
A/ wait until thread 0 produces the new wvalue
while ('!'new_walue_ produced) ;
printf("sdin"™, V): /S consuwme the new value
/4 this thread will have to notify that it consumed the wvalue. ..

i++:

Figure 2: A one-producer-many-consumer scenario

sents a one-producer-many-consumer scenario: at each iteration, the first processor writes
a new value into the shared variable V, and the rest of the processors read the new value
of V. From the DIR point of view, for the processors which consume the value of V, we can
see that the load instruction which corresponds to reading the new V value can be stored in
the Reuse Buffer. This way, for the next iterations, loading the value of V can be done faster.
However, it is obvious that the value of this load instruction could not be reused because
each time V will hold a new value. The invalidation mechanism for the Reuse Buffer must
be implemented globally because both local and remote stores have to be considered. The
solution would be to benefit from the invalidation messages sent at the level of the proces-
sor’s cache. Cache coherence can help at keeping the Reuse Buffer data correct.

2.3 Automatic Design Space Exploration

Simulating multicore architectures in order to find the optimum configuration proves to be
extremely time consuming because of the enormous design space of the researched applica-
tions, compiler’s parameters and architectures. Parallel benchmarks have to be used and the
simulation environment must provide support for multicores. Below it is presented a simu-
lation result from our previous work with UNISIM(http://unisim.org): we have eval-
uated the evolution of the global IPC of a dual-core Symmetric Multiprocessor. It can be ob-
served that besides the parameters specific to a single processor architecture, we have to take
into account more parameters, the ones that are multicore specific. In the more general case,
we should consider that our further developed multicore architecture can contain: different
types of processing elements, different types of interconnection networks, multiple memory
consistency models, some compiler optimization techniques etc. Therefore, an important
challenge in the field of CMPs is Automatic Design Space Exploration (ADSE): developing

http://unisim.org

IPC = finumber of Data Cache lines)
Branch predictar = Gshare; DC associativity = 4; DC line sk e = 32, Coherence pratocol = MES]; Mumber of cores= 2
1,8

1.7

Baz
64
128
286
B 512
1024
B8 2048

1.6
1.8

1.4

IPC

1,3

7

1.2

1.1

08

TR

.
R

==EiEd B

ns

ergesart Glic ksort aerage

=

Blackscholes Radix M atrix multiplication

Figure 3: IPC as a function of the number of lines of the data cache from a dual-core SMP

optimized heuristic research methods for the huge space of the parameters of applications,
compiler and architectures. ADSE has the purpose to automatically optimize the architec-
tural parameters by taking into account multiple objectives (IPC, power consumption, inte-
gration area etc.). Obviously the search in this huge design space cannot mean considering
every possible configuration. Exhaustive techniques must be replaced by heuristic-based
search methods. Local search algorithms (e.g.: hill climbing, simulated annealing), genetic
algorithms, ant colony algorithms, etc. could prove to be useful. Other advanced machine
learning techniques can further help by reducing the number of simulations required to find
a near optimal architectural configuration.

3 Conclusions

We believe that the already developed mechanisms for exploiting Instruction Level Paral-
lelism must be used in multicore architectures. Techniques like Value Prediction and Dy-
namic Instruction Reuse can help in increasing the performance over the sequential parts
of the parallel programs. However, such techniques have to be adapted to the more general
context provided by parallel programming. Also, developing a multi-criteria ADSE would
help in optimizing the process of determining the best architectural configuration.

References

[GFV09] Arpad Gellert, Adrian Florea, and Lucian Vintan. Exploiting selective instruc-
tion reuse and value prediction in a superscalar architecture. Journal of Systems
Architecture, 55(3):188-195, 2009.

[MSC*01] Milo M. K. Martin, Daniel J. Sorin, Harold W. Cain, Mark D. Hill, and Mikko H.
Lipasti. Correctly implementing value prediction in microprocessors that sup-
port multithreading or multiprocessing. In MICRO 34: Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture, pages 328-337,
Washington, DC, USA, 2001. IEEE Computer Society.

	Introduction
	Research challenges
	Using Value Prediction in Multicores
	Performing Dynamic Instruction Reuse in Multicores
	Automatic Design Space Exploration

	Conclusions

